DOI QR코드

DOI QR Code

Evaluation of antifouling system of new antifouling agents using spores of the green alga, Ulva pertusa and diatom, Nitzschia pungens

초기 착생생물 Ulva pertusa 포자와 Nitzschia pungens를 이용한 신방오제의 방오능 검증

  • Shin, Hyun-Woung (Dept. of Life Science and Biotechnology, Soonchunhyang University) ;
  • Kang, Seul-Gi (Dept. of Life Science and Biotechnology, Soonchunhyang University) ;
  • Son, Ji-Su (Dept. of Life Science and Biotechnology, Soonchunhyang University) ;
  • Jeon, Jae-Hyuk (Dept. of Life Science and Biotechnology, Soonchunhyang University) ;
  • Lee, Han-Joo (Dept. of Life Science and Biotechnology, Soonchunhyang University) ;
  • Jung, Sang-Mok (Dept. of Life Science and Biotechnology, Soonchunhyang University) ;
  • Smith, Celia M. (Dept. of Botany, University of Hawaii)
  • 신현웅 (순천향대학교 생명시스템학과) ;
  • 강슬기 (순천향대학교 생명시스템학과) ;
  • 손지수 (순천향대학교 생명시스템학과) ;
  • 전재혁 (순천향대학교 생명시스템학과) ;
  • 이한주 (순천향대학교 생명시스템학과) ;
  • 정상목 (순천향대학교 생명시스템학과) ;
  • Received : 2015.08.09
  • Accepted : 2015.09.01
  • Published : 2015.10.30

Abstract

Cosmopolitan green macroalga, Ulva pertusa is a widely spread species in most coastal waters. This benthic alga is appearing on marine objectives causes significantly economical and social problems. To prevent fouling organisms, new antifouling (AF) agents, such as ziram, diruon, zinc pyrithione, copper pyrithione, DBNPA and triclosan are used. However, the evaluations of new antifouling system of those agents strongly need more information on algae species for considering environment effect. Therefore, the purpose of this study was to evaluate the activity of antifouling system using Ulva spores and Nitzschia pungens. In addition, new AFS were evaluated the toxicity of microalga, Nitzschia pungens. In the motility of Ulva spores, ziram and zinc pyrithione were shown 50% higher inhibition motility than diuron, copper pyritione, DBNPA and triclosan. Ziram was appered the highest AFS of Ulva sore attachment. Copper pyrithione at the concentration of $100{\mu}g/L$ was inhibited 80% growth rate comparison of control. In conclusion, each new AF agents showed their specific AF activities against marine organisms based on this work.

대형녹조류인 Ulva pertusa는 전 세계 연안에 서식하는 저서성 종으로 대발생 또는 인공구조물에 착생되어 경제적, 사회적인 측면에서 문제를 야기시키고 있다. 착생생물을 제어하기 위해 신방오제인 ziram, diruon, zinc pyrithione(ZnPT), copper pyrithione(CuPT), DBNPA, triclosan 등이 방오도료로 사용 중이나, 대형 및 미세조류를 이용한 신방오제들의 방오능 검증과 기초적인 연구자료가 부족한 실정이다. 따라서 본 연구에서는 초기 우점착생종인 구멍갈파래의 포자를 이용하여 방오제의 효능을 검증하고 생체막 형성의 우점종인 미세조류 Nitzschia pungens를 이용한 방오능을 검증하였다. 구멍갈파래포자의 운동성 검증에서 ziram과 ZnPT는 diuron, CuPT, DBNPA, triclosan보다 50% 높은 운동성 억제를 나타내었고 착생 검증에서는 ziram이 가장 낮은 착생률 1%로 나타났으며 CuPT는 $100{\mu}g/L$의 농도에서 다른 대조군에 비해 80%의 성장율 억제를 보였다. 본 연구의 결과로 신방오제의 방오능을 검증하여 향후 방오능 검증에 기초자료가 될 것으로 사료된다.

Keywords

References

  1. Call, D. J., L. T. Brooke, R. J. Kent, M. L. Knuth, S. H. Poirier, J. M. Huot and A. R. Lima (1987) Bromacil and diuron herbicides: toxicity, uptake and elimination in freshwater fish. Arch. Environ. Contam. Toxicol. 16(5):607-613. https://doi.org/10.1007/BF01055817
  2. Chang, T. B., S. W. Chang, S. J. Lee and I. H. Cho (2012) Toxicity assessment and decomposition characteristics of triclosan in an E-beam irradiation process. J. Korea Geo-Environ. Soc. 13(3):5-11.
  3. Champ, M. A. (2000) A review of organotin regulatory strategies, pending actions, related costs and benefits. Sci. Total. Environ. 258(1):21-71. https://doi.org/10.1016/S0048-9697(00)00506-4
  4. Cho, J. Y., E. H. Kwon, J.S. Choi, S.Y. Hong, H. W. Shin and Y. K. Hong (2001) Antifouling activity of seaweed extracts on the green alga Enteromorpha prolifera and the mussel Mytilus edulis. J. Appl. Phycol. 13(2):117-125. https://doi.org/10.1023/A:1011139910212
  5. Crisp, D. J. and P. S. Meadow (1962) The chemical bases of gregariousness in Cirripedes. Proc. Roy. Soc. 156(965):500-520. https://doi.org/10.1098/rspb.1962.0052
  6. Cronin, E. R., A. C. Cheshire, S. M. Clarke and A. J. Melvile (1999) An investigation into the composition, biomass and oxygen budget of the fouling community on a tuna aquacultuer farm. Biofouling. 13(4):279-299. https://doi.org/10.1080/08927019909378386
  7. Evan, L. V. (1981) Marine algae and fouling: A review with particular reference to ship-fouling. Bot. Mar. 24(4):167-172.
  8. Evans, S. M., A. C. Birchenough and M. S. Branco (2000) "The TBT ban: Out of the flying pan into the fire?" Mar. Poll. Bull. 40(3):204-211. https://doi.org/10.1016/S0025-326X(99)00248-9
  9. Gao, Y., P. Zhou, Y. E. Lin, R. D. Vidic and J. E. Stout (2001) Efficacy of DBNPA Against Legionella pneumophila: Experimental results in a model water system. ASHRAE Transactions. 107:184-190.
  10. Girling, J. A., K. V. Thomas, S. J. Brooks, D. J. Smith, E. Shahsavari and A. S. Ball (2015) A macroalgal germling bioassay to assess biocide concentrations in marine waters. Mar. Poll. Bull. 91(1):82-86. https://doi.org/10.1016/j.marpolbul.2014.12.025
  11. Hahm, K. H., M. S. Kim and H. H. Lee (2002) The acute and chronic toxicity effects of triorganotins on the growth of microalgae, Skeletonema costatum. J. Korean Fish. Soc. 35(5):534-541. (in Korean with English abstract)
  12. International Maritime Organization (IMO) (2001), International convention on the control of harmful anti-fouling systems on ships, IMO, London, 22-25pp.
  13. Key, P. B., K. W. Chung, J. Hoguet, Y. Sapozhnikova and M. H. Fulton (2008) Effects of the anti-fouling herbicide Irgarol 1051 on two life stages of the grass shrimp, Palaemonetes pugio. J. Environ. Sci. Heal B. 43(1):50-55. https://doi.org/10.1080/03601230701734865
  14. Kim, P. G., M. E. Park, I. W. Lee, H. H. Chun and H. Park (2010) Evaluation of acute toxicity about leakage waters of antifouling paints on Sebastes schlegeli and artemia. J. Korean Soc. Mar. Environ. Saf. 16(4):361-367. (in Korean with English abstract)
  15. Kwon, H. K., H. S. Yang, Y. M. Yu and S. J. Oh (2012) Effects of substrate size on the growth of 4 microphytobenthos species ( Achnanthes sp., Amphora sp., Navicula sp. and Nitzschia sp.). J. Environ. Sci. 21(1):105-111.
  16. Lee, S. E., H. S. Won and D. S. Lee (2008) Determination of new antifouling agents in seacoasts in Korea by gas chromatography-mass spectrometry. Anal. Sci. Technol. 21(6):459-473.
  17. Park, K. H., K. T. Lee, J. S. Lee and K. N. Han (2006) Acute toxicity of antifouling agents (TBT, Sea-nine, Cu-pyrithione and Zn-pyrithione) to rockfish Sebastes schlegeli and amphipod Monocorophium acherusicum. J. Korean Soc. Mar. Environ. Engin. 9(1):21-28. (in Korean with English abstract)
  18. Rai, H. B., S. M. Jung, M. Sidharthan, J. H. Lee, C. Y. Lim, Y. K. Kang, C. Yeon, N. S. Park and H. W. Shin (2006) Chemotactic antifouling properties of methyl caproate: its implication for ship hull coatings. WSEAS Transactions Systems. 5(11):2581-2585.
  19. Shin, H. W. (1995) Biofouling by marine weedy algae. Korean J. Phycol. 10(2):97-108.
  20. Shin, H. W., M. Sidharthan and S. Y. Kim (2002) Forest fire ash impact on micro-and macroalgae in the receiving waters of the east coast of South Korea. Mar. Poll. Bull. 45(1):203-209. https://doi.org/10.1016/S0025-326X(02)00156-X
  21. Strand, J. and G. Asmund (2003) Tributyltin accumulation and effects in marine molluscs from west Greenland. Environ. Pollut. 123(1):31-37. https://doi.org/10.1016/S0269-7491(02)00361-5
  22. Stupak, M. E., M. T. Garcia and M. C. Perez (2003) Non-toxic alternative compounds for marine antifouling paints. Int. Biodeter Biodegr. 52(1):49-52. https://doi.org/10.1016/S0964-8305(03)00035-0
  23. Thorson, G. (1966) Some factors influencing the recruitment and establishment of marine benthic communities. Neth. J. Sea Res. 3(2): 267-293. https://doi.org/10.1016/0077-7579(66)90015-9
  24. Townsin, R. L. (2003) The ship hull fouling penalty. Biofouling. 19(S1):9-15.
  25. Wang, X. H., Li, J., Zhang, J. Y., Sun, Z, C., Yu, L., Jing, X. B., Wang. F. S.. Z. X. Sun and Z. J. Ye (1999) Polyaniline as marine antifouling and corrosion-prevention agent. Synthetic Metals, 102(1):1377-1380. https://doi.org/10.1016/S0379-6779(98)00384-1
  26. Yebra, D. M., S. Kiil and K. Dam-Jihansen (2004) Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat. 50(2):75-104. https://doi.org/10.1016/j.porgcoat.2003.06.001
  27. Zhao, X., Y. Su, J. Cao, Y. Li, R. Zhang, Y. Liu and Z. Jinag (2015) Fabrication of antifouling polymer-inorganic hybrid membranes through the synergy of biomimetic mineralization and nonsolvent induced phase separation. J. Mater. Chem. A. 3:7287-7295. https://doi.org/10.1039/C5TA00654F