DOI QR코드

DOI QR Code

Effect of Interface on Thermal Conductivity of Clad Metal through Thickness Direction for Heat Sink

히트 싱크용 클래드메탈에서 두께 방향의 열전도 특성에 미치는 계면의 영향

  • Kim, Jong-Gu (Division of Materials Science and Engineering, Pusan National University) ;
  • Kim, Dong-Yong (Division of Materials Science and Engineering, Pusan National University) ;
  • Kim, Hyun (Division of Materials Science and Engineering, Pusan National University) ;
  • Hahn, Byung-Dong (Korea Institute of Materials Science) ;
  • Cho, Young-Rae (Division of Materials Science and Engineering, Pusan National University)
  • Received : 2015.09.14
  • Accepted : 2015.09.24
  • Published : 2015.09.30

Abstract

A study on thermal properties for a single-layer metal and a 2-ply metal (clad metals) was investigated for the application of heat sink. For the single-layer metal, a stainless steel (STS) and an aluminum (Al) were selected. Also, a roll bonded clad metal with STS and Al was chosen for the 2-ply metal. The thermal conductivity of the sample was obtained from the thermal diffusivity measured by the light flash analysis (LFA), specific heat and density. Measured thermal property values were compared with the calculated values using the data from the references. For the single-layer metal, measured values for the thermal diffusivity and thermal conductivity were smaller than calculated values. Differences between measured and calculated values were about 6% and 18% for the STS and Al samples, respectively. For the clad metals, however, a large difference (55%) was observed. Here, a relatively small thermal conductivity measured by LFA was due to the existence of a interface between STS and Al in the clad metal. Such a interface reduces the moving velocity of free electrons and phonons in the clad metal. For the development of a high performance heat-issipation module with the multi-layer structure, the control of interface properties which determine thermal properties was confirmed to be important.

히트 싱크용 소재에 응용할 목적으로 단층금속과 2층금속 클래드메탈에 대해 열전도 특성에 대한 연구를 하였다. 단층시편으로는 스테인리스강과 알루미늄을 선택하였으며, 2층 금속으로는 스테인리스강과 알루미늄을 압연해서 제조한 클래드메탈을 사용하였다. 열전도도는 섬광법으로 측정한 열확산계수와 비열 및 밀도를 사용해 얻었다. 실험을 통해 얻은 측정값을 참고문헌에 보고된 자료를 사용해 얻은 계산값과 비교하였다. 단층시편의 경우, 실험을 통해 얻는 열확산계수와 열전도도는 계산값보다 작았다. 스테인리스강의 경우, 측정한 열전도도는 계산값에 비해 6% 정도 작았으며, 알루미늄의 경우 18% 정도 작았다. 반면, 2층 금속인 스테인리스강과 알루미늄의 클래드메탈은 측정한 열전도도가 계산값에 비해 55% 정도 낮게 나타났다. 섬광법으로 측정한 열전도도가 계산값보다 55% 정도 낮게 나타난 이유는 스테인리스강과 알루미늄의 사이에 존재하는 계면의 영향 때문이다. 스테인리스강과 알루미늄의 사이에 존재하는 계면은 열전도 특성을 지배하는 전자와 탄성파의 이동을 어렵게 하기 때문이다. 우수한 방열특성을 갖는 다층구조 방열모듈을 개발하기 위해서는 열전도 특성에 결정적으로 영향을 주는 계면 특성의 조절이 중요하다.

Keywords

References

  1. W. Suh, H. S. Jung, Y. H. Lee, Y. H. Kim and S. H. Choa, "Heat Dissipation Technology of IGBT Module Package", J. Microelectron. Packag. Soc., 21(3), 7 (2014). https://doi.org/10.6117/kmeps.2014.21.3.007
  2. S. Kim, "Thermal Management on 3D Stacked IC", J. Microelectron. Packag. Soc., 22(2), 5 (2015). https://doi.org/10.6117/kmeps.2015.22.2.005
  3. I. G. Kim, M. E. Son and Y. S. Kim, "Fabrication of the Cu- STS-Cu Clad Metal for High Strength Electric Device Lead Frame and Thermal Stability on Their Physical Properties", Journal of KWJS, 32(5), 80 (2014).
  4. W. Feng, L. Zhang, Y. Liu, X. Li, L. Cheng and B. Chen, "Thermal Mechanical Properties of SiC/SiC-CNTs Composites Fabricated by CVI Combined with Electrophoretic Deposition", Mater. Sci. Eng., A626, 500 (2015).
  5. S. M. Na, S. I. Go and S. J. Lee, "Observation of Thermal Conductivity of Pressureless Sintered AlN Ceramics under Control of $Y_2O_2$ Content and Sintering Condition", J. Kor. Ceram. Soc., 48(5), 368 (2011). https://doi.org/10.4191/kcers.2011.48.5.368
  6. Y. W. Kim, H. C. Park and K. D. Oh, "Effect of AlN Addition on the Thermal Conductivity of Sintered $Al_2O_3$", J. Kor. Ceram. Soc., 33(3), 285 (1996).
  7. G. Kim, K. M. Jung, J. T. Moon and J. H. Lee, "Electrical Resistivity and Thermal Conductivity of Paste Containing Ag-Coated Cu Flake Filler", J. Microelectron. Packag. Soc., 21(4), 51 (2014). https://doi.org/10.6117/kmeps.2014.21.4.051
  8. J. W. Roh, S. Y. Jang, J. Kang, S. Lee, J. S. Noh, J. Park and W. Lee, "Thermal Conductivity in Individual Single-Crystalline PbTe Nanowires", Kor. J. Met. Mater., 48(2), 175 (2010). https://doi.org/10.3365/KJMM.2010.48.02.175
  9. M. Abdel-Rahman, S. Ilahi, M. F. Zia, M. Debbar, N. Yacoubi and B. Ilahi, "Temperature Coefficient of Resistance and Thermal Conductivity of Vanadium Oxide 'Big Mac' Sandwich Structure", Infrared Phys. Technol., 71, 127 (2015). https://doi.org/10.1016/j.infrared.2015.03.006
  10. ASM International Handbook Committee, "Properties and Selection: Nanoferrous Alloys and Special-Purpose Materials", Metals Handbook 10th Ed., Vol. 2, ASM International, Ohio (1990) from http://matweb.com.
  11. J. M. Holt, "Structure Alloys Handbook", Handbook, CINDAS/Purdue University, Indiana (1996) from http://matweb.com.
  12. D. Peckner and I. M. Bernstein, "Handbook of Stainless Steels", in Handbook, McGraw-Hill Book Company, New York (1997) from http://matweb.com.
  13. F. Cardarelli, "Materials Handbook", in Handbook 2nd Ed., Springer-Verlag, London (2008) from http://matweb.com.
  14. C. J. H. Helmereich, R. Corbin and S. M. McDeavitt, "Measurement of Thermal Diffusivity of Depleted Uranium Metal Microspheres", J. Nucl. Mater., 446, 100 (2014). https://doi.org/10.1016/j.jnucmat.2013.10.063
  15. K. Kuniya, H. Arkawa, T. Kanai and A. Chiba, "Thermal Conductivity, Electrical Conductivity and Specific Heat of Copper-Carbon Fiber Composites", Trans. Japan Inst. Metals, 28(10), 819 (1987). https://doi.org/10.2320/matertrans1960.28.819
  16. D. R. Askeland and P. P. Phule, "The Science and Engineering of Materials 5th Ed." (in Korean), C. G. Kang, S. M. Koo, J. H. Kim, Y. W. Seo, K. Y. Son, K. S. Lee, J. H. Lee and H. C. Lee, Eds, pp. 791-806, Scitech Media, Seoul (2008).
  17. J. E. Lee, D. H. Bae, W. S. Chung, K. H. Kim, J. H. Lee and Y. R. Cho, "Effect of Annealing on the Mechanical and Interface Properties of Stainless Steel/Aluminum/Copper Clad- Metal Sheets", J. Mater. Process. Technol., 187-188, 546 (2007). https://doi.org/10.1016/j.jmatprotec.2006.11.121
  18. H. R. Akramifard, H. Mirzadeh and M. H. Parsa, "Cladding of Aluminum on AISI 304L Stainless Steel by Cold Roll Bonding: Mechanism, Microstructure and Mechanical Properties", Mater. Sci. Eng., A613, 232 (2014).
  19. H. Samadi and E. Gracia, "Thermal Conductivity of Plasma Sprayed Forsterite/Mullite Coatings", Ceram. Inter., 40, 13995 (2014). https://doi.org/10.1016/j.ceramint.2014.05.124

Cited by

  1. Evaluation of Thermal Conductivity for Screen-Printed AlN Layer on Al Substrate in Thickness Direction vol.22, pp.4, 2015, https://doi.org/10.6117/kmeps.2015.22.4.065
  2. Evaluation of the cross-plane thermal conductivity of double-layer materials vol.110, 2017, https://doi.org/10.1016/j.compositesb.2016.10.086
  3. STS316L 분말의 레이저 클래딩층 특성에 관한 연구 vol.24, pp.3, 2017, https://doi.org/10.6117/kmeps.2017.24.3.053