DOI QR코드

DOI QR Code

Seismic Performance of Octagonal Flared RC Columns using Oblong Hoops

장방형 띠철근을 이용한 팔각형 플레어 RC 기둥의 내진성능

  • 고성현 (제주국제대학교 토목공학과)
  • Received : 2013.07.30
  • Accepted : 2013.11.01
  • Published : 2015.11.01

Abstract

Transverse steel bars are used in the plastic hinge zone of columns to insure adequate confinement, prevention of longitudinal bar buckling and ductile behavior. Fabrication and placement of rectangular hoops and cross-ties in columns are difficult to construct. Details of reinforcement for rectangular section require a lot of rectangular hoops and cross-ties. In this paper, to solve these problems, the new lateral confinement method using oblong hoop is proposed for the transverse confinement of the flared column. It can be the alternative for oblong cross-section and flared column with improved workability and cost-efficiency. The final objectives of this study are to suggest appropriate oblong hoop details and to provide quantitative reference data and tendency for seismic performance or damage assessment based on the drift levels such as residual deformation, elastic strain energy. This paper describes factors of seismic performance such as ultimate displacement/drift ratio, displacement ductility, response modification factor, equivalent viscous damping ratio and effective stiffness.

횡방향철근은 기둥의 소성힌지구간에 충분한 구속효과, 축방향철근의 좌굴방지와 연성거동을 확보하기 위해 적용된다. 기둥에서 사각형 후프 띠철근과 보강 띠철근의 조립 및 배근방법은 시공이 까다롭고 많은 횡방향철근량이 요구된다. 본 논문에서, 이러한 문제점들을 해결하기 위하여 장방형 단면과 플레어 기둥의 횡구속을 위한 장방형 후프 띠철근을 사용한 새로운 횡구속 방법이 제안되었다. 개발된 장방형 후프 띠철근 상세는 장방형 단면과 플레어 기둥의 시공성과 경제성을 향상시켜줄 수 있는 하나의 대안으로서 적용 가능한 것으로 판단된다. 본 연구의 최종목적은 철근콘크리트 교각의 시공성 향상을 위한 장방형 후프 띠철근 상세의 제시와 실험적 기초자료의 제공과 함께 하중단계별 성능 및 손상평가를 위한 정량적 수치와 경향을 제공하기 위한 것이며, 극한변위, 극한드리프트비율, 변위연성도, 응답수정계수, 등가점성감쇠비, 잔류변형지수, 유효강성 등의 주요 내진성능평가 변수들에 대한 분석결과를 나타내었다.

Keywords

References

  1. AASHTO (1995), Standard Specifications for Highway Bridges, American Association of State Highway and Transportaion Officials, 16-th edition, Washington, D.C., USA.
  2. Caltrans (2009), Bridge Memo to Designers (MTD), California Department of Transportation, Sacramento, California.
  3. CALTRANS, Caltrans Seismic Design Criteria, Version 1.3, California Department of Transportation, Sacramento, USA, December, 2002.
  4. Ko, S. H. (2012), Seismic Performance of Square RC Column Confined with Spirals. Journal of Korea Institute for Structural Maintenance Inspection, KSMI, 16(5), 88-97 (in Koean). https://doi.org/10.11112/jksmi.2012.16.5.088
  5. Ko, S. H. (2013), Displacement Ductility of Circular RC Column According to the Spacing of Spirals. Journal of Korea Institute for Structural Maintenance Inspection, KSMI, 17(2), 71-82 (in Koean). https://doi.org/10.11112/jksmi.2013.17.2.071
  6. Ko, S. H. (2013), Seismic Performance and Flexural Over-strength of Circular RC Column. Journal of Korea Institute for Structural Maintenance Inspection, KSMI, 17(5), 49-58 (in Koean). https://doi.org/10.11112/jksmi.2013.17.5.049
  7. Ko. S. H., Lee, J. H. (2010), Low Cycle Fatigue Model for Longitudinal Reinforcement, Journal of the Korea Concrete Institute, 22(2), 273-282 (In Korean). https://doi.org/10.4334/JKCI.2010.22.2.273
  8. Korea Concrete Institute (2012), Concrete Structure Design Standard, Korea (in Koean).
  9. Lee, J. H., Ko. S. H. (2010), Low Cycle Fatigue Behavior for Longitudinal Reinforcement, Journal of the Korea Concrete Institute, 22(2), 263-271 (In Korean). https://doi.org/10.4334/JKCI.2010.22.2.263
  10. Ministry of Construction & Transportation (2012), Korea Bridge Design Specifications(Limited state design), Korea (in Koean).
  11. Nada, H., Sanders, D., Saiidi, M. S. (2003), Seismic performance of RC bridge frames with architectural flared columns, Report No. CCEER 03-03, California Department of Transportation, 476.
  12. Saiidi, M.S., Sanders, D.H., Goraninejad F., Martinovic F.M. and Mcelhaney, B.A. (2000), Seismic retrofit of non-prismatic RC bridge columns with fibrous composites, Proc., 12WCEE, New Zealand Society for Earthquake Engineering, Auckland, New Zealand, CD-rom.
  13. Standard New Zealand (1995), Design of Concrete Structures, NZS 3101, Willington, New Zealand.