DOI QR코드

DOI QR Code

Probabilistic Risk Assessment of Coastal Structures using LHS-based Reliability Analysis Method

LHS기반 신뢰성해석 기법을 이용한 해안구조물의 확률론적 위험도평가

  • 허정원 (전남대학교 해양토목공학과) ;
  • 정홍우 (정품건설(주) 기술연구소) ;
  • 안진희 (경남과학기술대학교 토목공학과) ;
  • 안성욱 (포스코건설 글로벌인프라본부)
  • Received : 2015.07.15
  • Accepted : 2015.09.02
  • Published : 2015.11.01

Abstract

An efficient and practical reliability evaluation method is proposed for the coastal structures in this paper. It is capable of evaluating reliability of real complicated coastal structures considering uncertainties in various sources of design parameters, such as wave and current loads, resistance-related design variables including Young's modulus and compressive strength of the reinforced concrete, soil parameters, and boundary conditions. It is developed by intelligently integrating the Latin Hypercube sampling (LHS), Monte Carlo simulation (MCS) and the finite element method (FEM). The LHS-based MCS is used to significantly reduce the computational effort by limiting the number of simulation cycles required for the reliability evaluation. The applicability and efficiency of the proposed method were verified using a caisson-type breakwater structure in the numerical example.

이 논문에서는 해안구조물에 대한 실질적이고 효율적인 구조신뢰성평가 기법을 제시하였다. 제안기법은 파랑, 조류 등의 하중관련 변수 그리고 콘크리트의 탄성계수와 압축강도, 지반정수 및 경계조건 등과 같은 저항관련 설계변수의 불확실성을 명확히 고려한 복잡한 해안구조물의 신뢰성을 평가할 수 있다. 라틴 하이퍼큐브 샘플링(LHS), 몬테카를로 시뮬레이션(MCS) 및 유한요소법을 합리적으로 결합한 제안기법에서 LHS기반 MCS는 신뢰성평가에 필요한 샘플링 수를 대폭 줄여주므로 계산노력이 획기적으로 감소된다. 검증예제를 통하여 제안기법이 상대적인 정확도를 보장하며 계산상의 효율성이 우수한 것으로 확인되었다. 또한 실제의 케이슨형식 방파제 구조물을 대상으로 한 수치예제를 통하여 그 적용성과 효율성을 입증하였다. 특히 유한요소법 또는 유한차분법과 같은 알고리즘 형태의 암시적 한계상태함수를 갖는 경우와 비선형해석, 복합재료, 다양한 기하형상 등을 복잡한 구조거동을 고려해야 하는 실제적인 구조물의 신뢰성평가에 적합한 것으로 판단된다.

Keywords

References

  1. AASHTO (2007), AASHTO LRFD Bridge Design Specifications, 4th Ed.
  2. AISC (2010), Steel Construction Manual, 14th edition, American Institute of Steel Construction.
  3. Haldar, A. and Mahadevan, S. (2000), Probability, Reliability and Statistical Methods in Engineering Design, John Wiley & Sons, New York, NY.
  4. Huh, J., Park, O-J., Kim, Y. S., and Hur, D. S. (2010a), Reliability Analysis of a Quay Wall Constructed on the Deep-Cement-Mixed Ground(Part I: External Stability of the Improved Soil System), Journal of Korean Society of Coastal and Ocean Engineers, 22(2), pp. 79-87.
  5. Huh, J., Park, O-J., Kim, Y. S., and Hur, D. S. (2010b), Reliability Analysis of a Quay Wall Constructed on the Deep-Cement-Mixed Ground(Part II: Internal Stability of the Improved Soil System), Journal of Korean Society of Coastal and Ocean Engineers, 22(2), pp. 88-94.
  6. Huh, J. and Haldar, A. (2001), Stochastic Finite-Element-Based Seismic Risk of Nonlinear Structures, Journal of Structural Engineering, ASCE, 127(3), pp. 323-329. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:3(323)
  7. Jung, H.-W., Huh J., An, S.-W., and Lee, J.-H. (2012), Probabilistic Structural Safety Assessment of Quay Walls using LHS-based Reliability Analysis Method, Proceeding of 2012 KAOSTS Annual Conference, 1, pp. 1541-1545.
  8. Kim, D. H. and Yoon, G. L. (2009), Application of Importance Sampling to Reliability Analysis of Caisson Quay Wall, Journal of Korean Society of Coastal and Ocean Engineers, 21(5), pp. 405-409.
  9. Kim, S. R. and Park, C. M. (2003), Settlement prediction in the New Pusan Port Project Site (Design stage), Proc. Korea-Japan Joint Workshop, Characterization of Thick Clay Deposits, Reclamation and Port Construction, pp. 195-209.
  10. Lee, C-E. (2008), Reliability Analysis and Evaluation of Partial Safety Factors for Wave Run-up, Journal of Korean Society of Coastal and Ocean Engineers, 20(4), pp. 355-362.
  11. Melchers, R. (2001), Structural Reliability Analysis and Prediction, John Wiley & Sons, New York, NY.
  12. Nagao, T. (2001), Reliability based design method for caisson type quay wall, Research report of National Institute for land and infrastructure management.
  13. Olsson, A. and Sandberg, G. (2002), Latin Hypercube Sampling for Stochastic Finite Element Analysis, Journal of Engineering Mechanics, 128(1), pp. 121-125. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:1(121)
  14. Oumeraci, H., Kortenhaus, A., Allsop, W., de Groot, M., Crouch, R., Vrijling, H., and Voortman, H. (2001), Probabilistic Design Tools for Vertical Breakwaters, Balkema Publishers, New York.
  15. PIANC, W.G. (2003), Breakwaters with vertical and inclined concrete walls, Report, Maritime Navigation Commission (MarCom).
  16. Yang, I.-H. (2006), Uncertainty Analysis of Concrete Structures Using Modified Latin Hypercube Sampling Method, International Journal of Concrete Structures and Materials, 18(2E), pp. 89-95. https://doi.org/10.4334/IJCSM.2006.18.2E.089

Cited by

  1. Reliability Analysis of the Long Caisson Breakwater Considering to the Wave Force Reduction Parameter vol.29, pp.2, 2017, https://doi.org/10.9765/KSCOE.2017.29.2.121