DOI QR코드

DOI QR Code

MEPS-GC/MS를 이용한 농약류 동시 수질분석

Simultaneous Determination of Pesticides in Water Using a GC/MS Coupled with Micro Extraction by Packed Sorbent

  • 이기창 (경상북도보건환경연구원) ;
  • 이원태 (금오공과대학교 환경공학전공)
  • Lee, Ki-chang (Gyeongsangbuk-do Institute of Health and Environment) ;
  • Lee, Wontae (Department of Environmental Engineering, Kumoh National Institute of Technology)
  • 투고 : 2015.03.18
  • 심사 : 2015.05.15
  • 발행 : 2015.05.31

초록

본 연구는 on-line micro extraction by packed sorbent (on-line MEPS)와 시료다량주입장치인 programmed temperature vaporizer (PTV) injector를 결합한 가스크로마토그래피 질량분석 시스템을 이용하여 유기인계 농약인 methyldemetone-S, diazinon, fenitrothion, parathion, phentoate, O-ethyl O-(4-nitrophenyl) phenylphosphonothioate (EPN)과 카바이트계인 carbaryl에 대한 동시 수질분석법을 확립하였다. MEPS 내 sorbent는 polystyrene divinylbenzene (PDVB) 재질을 이용하였다. 시료전처리시 추출용매 종류, pH, 추출용매량 및 시료주입왕복횟수가 분석에 미치는 영향과 정도보증(QA/QC), 그리고 환경시료에 대한 각 물질의 회수율을 평가하였다. 추출용매는 acetone과 dichloromethane을 80 : 20 (v/v)으로 혼합하여 사용하였고, 내부표준물질과 황산을 첨가한 시료 1 mL를 대상으로 추출용매량 $30{\mu}L$, 시료주입왕복횟수를 7회로 추출하여 분석조건을 최적화하였다. pH가 낮을수록 Diazinon의 분석감응도는 감소한 반면 carbaryl의 분석감응도는 증가하였다. 정도보증결과 항목별 방법검출한계 및 정량한계는 각각 $0.02{\sim}0.18{\mu}g/L$, $0.08{\sim}0.59{\mu}g/L$로 낮았으며, 농도범위 $0.5{\sim}5.0{\mu}g/L$ 수준에서 정밀도와 정확도 범위는 각각 1.5~11.5%, 83.3~129.8%로 나타났다. 환경시료 중 carbaryl을 제외한 모든 항목의 회수율은 75.7~129.3%로 적합하였다. Carbaryl에 대한 회수율은 수돗물, 지하수, 하천수 분석에서 적합한 범위를 나타냈으나, 하수처리방류수에서는 200% 이상으로 만족하지 못하였다.

This study established an analytical method to simultaneously determine six organophosphorous pesticides [methyldemetone-S, diazinon, fenitrothion, parathion, phentoate, and O-ethyl O-(4-nitrophenyl) phenylphosphonothioate (EPN)] and carbaryl in water using a gas chromatography/mass spectrometry (GC/MS) system coupled with on-line micro extraction by packed sorbent (MEPS) and programmed temperature vaporizer (PTV) injector. Polystyrene divinylbenzene (PDVB) was used as a sorbent of MEPS. The effects of elution solvents, pH, elution volume and draw-eject cycles of samples on sample pretreatment process were investigated. Also, quality assurance and quality control (QA/QC) and the recovery of the pesticides in environmental samples were evaluated. The elution was performed using $30{\mu}L$ of a mixed solvent (acetone : dichloromethane = 80 : 20 (v/v)). Sample pretreatment processes were optimized with seven cycles of draw-eject of sample (1 mL) spiking an internal standard and sulfuric acid. At lower pH, the analytical sensitivity of diazinon decreased, but that of carbaryl increased. The method detection limit and the limit of quantification for this method were 0.02~0.18 and $0.08{\sim}0.59{\mu}g/L$, respectively. The method precision and accuracy were 1.5~11.5% and 83.3~129.8%, respectively, at concentrations of $0.5{\sim}5.0{\mu}g/L$. The recovery rates for all the pesticides except carbaryl in various environmental samples ranged 75.7~129.3%. The recovery rate of carbaryl in effluent sample was over 200% whereas carbaryl in drinking water, groundwater, and river water were in the acceptable range.

키워드

참고문헌

  1. Hu, C., He, M., Chen, B. and Hu, B., "A sol-gel polydimethylsiloxane/polythiophene coated stir bar sorptive extraction combined with gas chromatography-flame photometric detection for the determination of organophosphorus pesticides in environmental water samples," J. Chromatogr. A, 1275, 25-31(2013). https://doi.org/10.1016/j.chroma.2012.12.036
  2. Seebunrueng, K., Santaladchaiyakit, Y. and Srijaranai, S., "Vortex-assisted low density solvent based demulsified dispersive liquid-liquid microextraction and high-performance liquid chromatography for the determination of organophosphorus pesticides in water samples," Chemosphere, 103, 51-58(2014). https://doi.org/10.1016/j.chemosphere.2013.11.024
  3. Mauriz, E., Calle, A., Abad, A., Montoya, A., Hildebrandt, A., Barcelo, D. and Lechuga, L. M., "Determination of carbaryl in natural water samples by a surface plasmon of resonance flow-through immunosensor," Biosens. Bioelectron., 21, 2129-2136(2006). https://doi.org/10.1016/j.bios.2005.10.013
  4. Ballesteros, E. and Parrado, M. J., "Continuous solid-phase extraction and gas chromatographic determinatioin of organophosphorus pesticides in natural and drinking waters," J. Chromatogr. A, 1029, 267-273(2004). https://doi.org/10.1016/j.chroma.2003.12.009
  5. Wu, L., Song, Y., Hu, M., Zhang, H., Yu, A., Yu, C., Ma, Q. and Wang, Z., "Application of magnetic solvent bar liquidphase microextraction for determination of organophosphorus pesticides in fruit juice samples by gas chromatography mass spectrometry," Food Chem., 176, 197-204(2015). https://doi.org/10.1016/j.foodchem.2014.12.055
  6. Anwar, Z. M., Rizk, M. A., Khairy, G. M. and EI-Asfoury, M. H., "Determination of organophosphorus pesticides in water samples by using a new sensitive lumine scent probe of Eu(III) complex," J. Luminescence, 157, 371-382(2015). https://doi.org/10.1016/j.jlumin.2014.09.008
  7. Gutierrez Valencia, T. M. and Garcia de Llasera, M. P., "Determination of organophosphorus pesticides in bovine tissue by an on-line coupled matrix solid-phase dispersion-solid phase extraction-high performance liquid chromatography with diode array detection method," J. Chromatogr. A, 1218, 6869-6877(2011). https://doi.org/10.1016/j.chroma.2011.08.011
  8. Cortes-Aguado, S., Sanchez-Morito, N., Arrebola, F. J., Garrido Frenich, A. and Martinez Vidal, J. L., "Fast screening of pesticide residues in fruit juice by solidphase microextraction and gas chromatography-mass spectrometry," Food Chem., 107, 1314-1325(2008). https://doi.org/10.1016/j.foodchem.2007.09.033
  9. Su, P. G. and Huang, S. D., "Determination of organophosphorus pesticides in water by solid-phase microextraction," Talanta, 49, 393-402(1999). https://doi.org/10.1016/S0039-9140(99)00002-8
  10. Farajzadeh, M. A., Djozan,D., Nouri, N., Bamorowat, M. and Shalamzari, M. S., "Coupling stir bar sorptive extraction dispersive liquid-liquid microextraction for preconcentration of triazole pesticides from aqueous samples followed by GCFID and GC-MS determinations," J. Sep. Sci., 33, 1816-1828(2010). https://doi.org/10.1002/jssc.201000088
  11. Zuin, V. G., Schellin, M., Montero, L., Yariwake, J. H., Augustod, F. and Popp, P., "Comparison of stir bar sorptive extraction and membrane-assisted solvent extraction as enrichment techniques for the determination of pesticide and benzo [a]pyrene residues in Brazilian sugarcane juice," J. Chromatogr. A, 1114, 180-187(2006). https://doi.org/10.1016/j.chroma.2006.03.035
  12. Lambropoulou, D. A. and Albanis, T. A., "Liquid-phase microextraction techniques in pesticide residue analysis," J. Biochem. Biophysical Methods, 70, 195-228(2007). https://doi.org/10.1016/j.jbbm.2006.10.004
  13. Pintoa, M. I., Sontag, G., Bernardino, R. J. and Noronha, J. P., "Pesticides in water and the performance of the liquidphase microextraction based techniques. A review," Microchem. J., 96, 225-237(2010). https://doi.org/10.1016/j.microc.2010.06.010
  14. Ferreira, A., Rodrigues, M., Oliveira, P., Francisco, J., Fortuna, A., Rosado, L., Rosado, P., Falcao, A. and Alves, G., "Liquid chromatographic assay based on microextraction by packed sorbent for therapeutic drug monitoring of carbamazepine, lamotrigine, oxcarbazepine, phenobarbital, phenytoin and the activemetabolites carbamazepine-10,11-epoxide and licarbazepine," J. Chromatogr. B, 971, 20-29(2014). https://doi.org/10.1016/j.jchromb.2014.09.010
  15. Cavalheiro, J., Prieto, A., Monperrus, M., Etxebarria, N. and Zuloaga, O., "Determination of polycyclic and nitro musks in environmental water samples by means of microextraction by packed sorbents coupled to large volume injection-gas chromatography-mass spectrometry analysis," Anal. Chim. Acta, 773, 68-75(2013). https://doi.org/10.1016/j.aca.2013.02.036
  16. Rodrigues, M., Alves, G., Rocha, M., Queiroz, J. and Falcaao, A., "First liquid chromatographic method for the simultaneous determination of amiodarone and desethylamiodarone in human plasma using microextraction by packed sorbent (MEPS) as sample preparation procedure," J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 913-914, 90-97(2013). https://doi.org/10.1016/j.jchromb.2012.11.028
  17. Alves, G., Rodrigues, M., Fortuna, A., Falcaao, A. and Queiroz, J., "A critical review of microextraction by packed sorbent as a sample preparation approach in drug bioanalysis," Bioanalysis, 5, 1-34(2013). https://doi.org/10.4155/bio.12.307
  18. Mercolini, L., Protti, M., Fulgenzi, G., Mandrioli, R., Ghedini, N., Conca, A. and Raggi, M. A., "A fast and feasible microextraction by packed sorbent (MEPS) procedure for HPLC analysis of the atypical antipsychotic ziprasidone in human plasma," J. Pharmaceut. Biomed. Anal., 88, 467-471(2014). https://doi.org/10.1016/j.jpba.2013.09.019
  19. Altun, Z., Abdel-Rehim, M. and Blomberg, L. G., "New trends in sample preparation: on-line microextraction in packed syringe (MEPS) for LC and GC applications Part III: Determination and validation of local naesthetics in human plasma samples using a cation-exchange sorbent, and MEPSLC-MS-MS," J. Chromatogr. B, 813, 129-135(2004). https://doi.org/10.1016/j.jchromb.2004.09.020
  20. Said, R., Pohanka, A., Abdel-Rehim, M. and Beck, O., "Determination of four immunosuppressive drugs in whole blood using MEPS and LC-S/MS allowing automated sample workup and analysis," J. Chromatogr. B, 897, 42-49(2012). https://doi.org/10.1016/j.jchromb.2012.04.006
  21. Bagheri, H., Ayazi, Z., Es'haghi, A. and Aghakhani, A., "Reinforced polydiphenylamine nanocomposite for microextraction in packed syringe of various pesticides," J. Chromatogr. A, 1222, 13-21(2012). https://doi.org/10.1016/j.chroma.2011.11.063
  22. Bagheri, H, Alipour, N. and Ayazi, Z., "Multiresidue determination of pesticides from aquatic media using polyaniline nanowires network as highly efficient sorbent for microextraction in packed syringe," Anal. Chim. Acta, 740, 43-49 (2012). https://doi.org/10.1016/j.aca.2012.06.026
  23. Jafari, M., Saraji, M. and Yousefi, S., "Negative electrospray ionization ion mobility spectrometry combined with microextraction in packed syringe for direct analysis of phenoxyacid herbicides in environmental waters," J. Chromatogr. A, 1249, 41-47(2012). https://doi.org/10.1016/j.chroma.2012.06.024
  24. Quinto, M., Spadaccino, G., Nardiello, D., Palermo, C., Amodio, P., Li, D. and Centonze, D., "Microextraction by packed sorbent coupled with gaschromatography-mass spectrometry: A comparison between "draw-eject" and "extractdiscard" methods under equilibriumconditions for the determination of polycyclic aromatic hydrocarbonsin water," J. Chromatogr. A, 1371, 30-38(2014). https://doi.org/10.1016/j.chroma.2014.10.062
  25. AWWA, Standard Method 6610(1999).
  26. EPA, Method 531.2, Revision 1.0(2001).
  27. Korean Ministry of Environment, Korean Standards Methods on Drinking Water(2013).