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Abstract—In simulation-based circuit optimization, 
many simulation runs may be wasted while evaluating 
infeasible designs, i.e. the designs that do not meet the 
constraints. To avoid such a waste, this paper 
investigates the use of support vector machine (SVM) 
classifiers in predicting the design’s feasibility prior to 
simulation and the optimal selection of the SVM 
parameters, namely, the Gaussian kernel shape 
parameter γ and the misclassification penalty 
parameter C. These parameters affect the complexity 
as well as the accuracy of the model that SVM 
represents. For instance, the higher γ is good for 
detailed modeling and the higher C is good for 
rejecting noise in the training set. However, our 
empirical study shows that a low γ value is preferable 
due to the high spatial correlation among the circuit 
design candidates while C has negligible impacts due 
to the smooth and clean constraint boundaries of 
most circuit designs. The experimental results with an 
LC-tank oscillator example show that an optimal 
selection of these parameters can improve the 
prediction accuracy from 80 to 98% and model 
complexity by 10×.    
 
Index Terms—Support vector machine classifier, 
analog design optimization, feasibility prediction, 
SVM parameter   

I. INTRODUCTION 

Simulation-based circuit optimizers find an optimal set 
of design parameter values (e.g. transistor sizes) for a 
given analog circuit by iteratively running circuit 
simulations with new design candidates [1-3]. One 
challenge that most simulation-based circuit optimizers 
face is the long execution time, due to a large number of 
simulation runs typically required to find the optimal 
design. Especially, when the design has many constraints 
to satisfy, the optimizer may waste simulation efforts 
merely in evaluating the infeasible designs. This is 
particularly the case when a designer prescribes the 
parameter ranges that span a much larger space than the 
actual feasible design space of the circuit, as illustrated in 
Fig. 1. For instance, when designing an LC oscillator, it 
is difficult to set the search ranges for the transistor sizes 
and inductance/capacitance values that can tightly 
encompass the designs that satisfy the start-up condition, 
frequency tuning range, etc. If the ranges are too wide, 
the optimizer may spend most of its time exploring the 
infeasible space, as it occupies a large portion of the 
design space. 

This paper focuses on the problem of avoiding this 
waste of efforts in simulating the infeasible designs and 
investigates the use of support vector machine (SVM) 
classifiers to predict whether a chosen design candidate 
will satisfy the design constraints or not prior to running 
the simulation. SVM [4-6] is a popular classification 
algorithm that can identify via training the criteria of 
discriminating sample points distributed in a high-
dimensional space. While the circuit optimizer selects 
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design candidates and runs simulations for them, an 
SVM classifier can train itself regarding the feasible 
design space of the circuit and provide its prediction as to 
whether the design is feasible or not (Fig. 1). The SVM 
classifier can make an increasingly better prediction as 
the iteration proceeds and can prevent the optimizer from 
launching simulations for infeasible design candidates, 
saving the overall execution time. 

However, the performance and accuracy of an SVM 
classifier can vary widely with its model parameters, 
such as kernel shape and penalty. These parameters are 
known to affect both the classification accuracy for the 
training data and prediction accuracy for the new data [7]. 
While some optimization approaches to determine the 
SVM parameters in image recognition applications have 
been previously proposed [8, 9], they are applicable only 

when a large number of training samples are available 
and the training process may take a long time. Hence, 
these approaches are not suitable for predicting the 
feasibility of design candidates during circuit 
optimization where the training set accumulates 
incrementally and the SVM classifier must be trained 
repetitively as the optimization iteration proceeds. In 
prior works, the SVM parameters are determined by 
selecting the one which shows the best performance 
among trials [4-6]. 

This paper conducts an empirical study on the 
influences of the shape and penalty parameters on the 
SVM classifier’s prediction accuracy and model 
complexity. Using a two-class SVM classifier with a soft 
margin as our baseline classifier, a series of experiments 
is conducted to investigate the influences of the classifier 
parameters on the performance of predicting the feasible 
design space of an LC oscillator with six design 
parameters. Contrary to the common belief that the larger 
shape parameter and larger penalty parameter lead to the 
more accurate and reliable classification, our results 
indicate that the SVM classifiers with small shape 
parameters delivers the better prediction performance 
despite their slower evaluation speed. It is primarily 
because most analog circuits exhibit strong spatial 
correlation across the design space [10]. On the other 
hand, the penalty parameter is found to have negligible 
influence because the training samples collected from 
circuit simulations have little noise and the feasible 
region boundaries formed by these samples are smooth 
and clean. 

The remaining part of this paper is organized as 
follows. First, the background on the SVM classifier is 
briefly reviewed in Section 2, followed by a discussion 
of its key model parameters and their influences on the 
model complexity and prediction accuracy in Section 3. 
Then, Section 3 outlines the setup of our empirical study 
and Section 4 presents the results on the LC oscillator 
example. Finally, Section 5 concludes this paper. 

II. SUPPORT VECTOR MACHINE (SVM) 

CLASSIFIERS 

The classification problem is finding a function of the 
data point that the class or category of new data point can 
be computed from it. In machine learning approaches 
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Fig. 1. (a) Illustration of a feasible region (R1) corresponding 
to a design constraint (P1 < PSPEC). performance constraints, (b) 
An SVM classifier aims to learn and predict the feasible space 
spanned by multiple design constraints (R1, R2, and R3)  
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with supervised-learning scheme, the function is usually 
found by determining its coefficient to classify a training 
data set, which includes the information of class for the 
data points. 

The SVMs was first proposed with the idea of 
formulating classification problem as a maximization 
problem of classification margin, which is provided by a 
hyperplane that separates two group of data points. 

Two-class soft margin SVM is used in this paper. It 
assumes the data points consists of two groups and 
allows some of the data points to be misclassified. The 
kernel trick for SVMs is proposed to handle the data 
which is not linearly separable. By using the kernel trick, 
the data points are projected into the space of higher 
dimension, where the projected points become linearly 
separable [7]. 

Eq. (1) shows the Lagrangian dual formulation for the 
problem that the SVM classifier solves to maximize 
classification margin. In (1), ix stands for the position 

vector of data point and iy is the label of the data point 
whose value can be 1 or -1. The constraints in (1) 
requires the right classification of training data, while 
allowing some of the training data points to be 
misclassified for achieving larger classification margin 
and enhancing its prediction accuracy. 
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The function (2) is called Gaussian kernel, which is 

exponentially decreasing function of the distance 
between two data points. By construction, it models the 
spatial correlation or resemblance between the data 
points, controlling the decreasing rate of correlation with 
the shape parameter γ. Gaussian kernel function is one of 
the most popular kernel functions, since it can provide 
projection to infinite dimensional space and can applied 
to problems with arbitrary nonlinear boundary. 

The parameters γ and C are generally known to affect 
the performance in classifying the training data and 
predicting for new data. Since the kernel function can be 

interpreted as the spatial correlation between data points, 
small γ is suitable for the data points with strong 
correlation and vice versa. The penalty parameter C 
controls the trade-off between maximizing classification 
margin and regularizing the noisy training data. It 
enables the SVM classifier to work for the data points 
with overlapping region between different classes. 
Usually, setting too small values for the γ and C causes 
underfitting problem, while overfitting problem arises 
when too large values are assigned for them. 

III. OPTIMAL SVM CLASSIFIER FOR 

PREDICTING DESIGN FEASIBILITY OF ANALOG 

CIRCUITS  

The smooth characteristic of analog performance 
surface makes the boundary of feasible design region for 
analog circuit to be clean and smooth. The feasible 
design region is formed from the performance functions 
and constraints which give upper bound or lower bound 
for the performance metric. Therefore, the smoothness or 
roughness of the boundary for feasible region is 
determined by that of the performance function. Also, the 
feasible design region and infeasible design region would 
be clearly distinguished. In other words, there are little 
design points that constructs overlapping region in which 
the feasible design points and infeasible design points are 
blended. In determining the parameters γ and C, these 
peculiarities need to be considered as well as the usual 
concerns for over-fitting and under-fitting problems.  

The shape parameter γ of the Gaussian kernel first 
need to be small to reflect the smoothness. The 
continuous and smooth performance surface of analog 
circuit results in strong correlation between the feasibility 
of adjacent design points. The Gaussian kernel function 
models the strong correlation by making the decreasing 
rate of spatial correlation to be small. Certainly, too 
strong modeling for the correlation between design 
points may cause under-fitting problem, oversmoothing 
the boundary more than its natural smoothness. However, 
the main consideration in finding optimal values for γ is 
to find small value of it to best model the smoothness. 

The penalty parameter C for misclassification is 
expected to have little influence because the boundary of 
feasible design regions will be clean. In other words, the 
smooth performance surfaces do not generate 
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overlapping regions for feasible design region and 
infeasible design. It implies there is little room for the 
penalty parameters to affect the performance of SVM 
classifier by rejecting noise in training data.  

The small influence of the C will be exhibited near the 
pointed corners of feasible design region. When the 
design specification of analog circuit includes many 
performance metrics, the feasible design region can have 
sharp corners or edges which are formed during 
intersecting feasible design regions corresponding to 
individual performance metrics. In this locality, the 
penalty parameter can have large influence coinciding 
with too small shape parameter which over-smoothes the 
keen edges. In this case, some of the feasible region is 
trimmed out during training SVM classifier, being the 
misclassified data points. Nevertheless, the overall effect 
of penalty parameter is expected to be small since the 
great part of the boundary is smooth and clean. 

IV. EXPERIMENT DESIGN 

The overall experiment is performed by training SVM 
classifier with different parameters and comparing the 
corresponding prediction accuracy and model complexity. 
Two dimensional sweep analysis is performed for γ and 
C, where the sweep range for γ and C is 10-3 to 102 and 
106 to 1010, respectively. Two data sets are generated for 
training SVM and validating the prediction result. Each 
data set consists of design parameter values for the 
circuit and the label for feasibility, which is generated by 
measuring circuit performance with SPICE simulations. 

The design parameters in data sets are generated by 
sampling their values uniformly in the range given in 

Table 1. The examples of sampled design points are 
listed in Table 1 (D1, .D2, D3 and D4). Total of 5000 
design parameter values are drawn, which is large 
enough to reduce the influence of the size of training data 
and to focus on the effect of γ and C. 

The model complexity and prediction accuracy is 
chosen to evaluate the prediction accuracy of SVM 
considering its potential application to analog design 
optimization. The prediction accuracy is defined by the 
ratio of the number of correctly predicted design point 
and total number of design points in validation data set. 
The model complexity is defined as the ratio of the 
number of support vectors and the number of total input 
data points.  

The example circuit is an LC-tank voltage controlled 
oscillator (LC-VCO) [11]. Fig. 2 shows the schematic 
diagram of the circuit which consists of cross-coupled 
MOS pairs, LC tank and current source. The LC tank 
consists of spiral inductor and MOS varactor bank. There 
are six design parameters whose searching ranges are 
given in Table 1. It includes the widths for P1, P2 (Wp) 
and N1, N2 (Wn), the radius, spacing, track width of 
spiral inductor (R, S, T) and the multiplication factor of 
MOS varactor bank (M). The current source is realized 
by a PMOS transistor with fixed gate voltage 

For the LC-VCO circuit, performance constraints are 
given on upper bound for minimum oscillation frequency 
(FMIN), lower bound for maximum oscillation frequency 
(FMAX), lower bound for startup criterion (α) and upper 

 

Fig. 2. An LC-tank voltage contolled oscillator. The LC tank 
consists of a spiral inductor and a MOS capacitor bank  

 
 

Table 1. Range of design parameters for the LC-VCO and four 
sample design parameters 

Parameters Range D1 D2 D3 D4 
Wp [um] 0.480 – 480 148 52 54 140 
Wn [um] 0.480 – 480 187 235 72 164 
R [um] 15 – 50 16 25 21 15 
T [um] 5.0 – 10 9.5 5.2 8.3 6.5 
S [um] 2.0 – 3.0 2.2 2.4 2.1 2.7 

M 50.0 – 450 390 280 341 275 

 
Table 2. The performance and feasibility of design samples 
(D1-D4) in Table 1 

Design FMIN [GHz] FMAX [GHz] α PN [dBc] Feasibility 
D1 5.7 7.5 3.5 -108 True 
D2 5.5 7.2 3.3 -103 True 
D3 5.6 7.5 1.9 -102 False 
D4 6.5 8.5 3.0 -105 False 

Constraint < 6.0 > 7.0 > 2.0 < -100  
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bound for phase noise (PN) at 10MHz offset from 
oscillation frequency. The oscillation frequency is 
controlled by changing the control voltage applied on the 
bulk node (VCTRL) of the MOS varactor bank. The startup 
criterion is defined as (3), as the startup condition for 
oscillation is determined from the ratio of negative 
resistance of MOS pairs and the resistive loss of LC tank. 

 
 m TANKg Ra = ×               (3) 

 
Although the power consumption of the circuit is also 

an important performance metric, it can be controlled 
easily by sizing PMOS current source and hence not 
considered by fixing the width of the PMOS transistor. 

V. EXPERIMENT RESULT 

Table 2 lists the circuit performances for example 
design parameters. The design points D1 and D2 are 
feasible while D3 and D4 are infeasible. The design D3 
is infeasible since it violates the constraints on startup 
condition, α, while in D4, the minimum frequency 
constraint is not satisfied. 

Fig. 3 shows the performance of circuit for a feasible 

design and an infeasible one. The main difference 
between two designs is WP and WN, which determines 
the transconductance (gm) provided by MOS pairs. Fig. 
3(a) shows the output voltages on VOP and VON over 
time. The oscillation sustains for the feasible design 
while the amplitude of oscillation decays for infeasible 
design. Fig. 3(b) shows the magnitude of output port 
impedance between VOP and VON, which is also 
determined by the difference in gm. 

Fig. 4 shows the design parameters used for training 
data set and the support vectors selected after training 
SVM classifier. The circles and dots represent the 
feasible and the infeasible design points respectively. The 
support vectors are chosen from the boundary of the 
feasible design region as in Fig. 4(b). Among all of the 
input data points, only the support vectors are used in 
predicting feasibility of unknown design points and the 
number of support vectors determines the model 
complexity of the SVM classifier. 
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Fig. 3. (a) output voltage of oscillator, (b) output port 
impedance of a feasible design paramter and infeasible one 
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Fig. 4. Scatter plot of design parameters projected in 2D space. 
Circles represents feasible design paramters and dots represnet 
infeasible ones (a) Training data set for SVM, (b) Support 
vectors determined by SVM 
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Fig. 5(a) shows the influence of the parameters on the 
prediction accuracy. As expected, the shape parameter of 
kernel function mostly influences the prediction accuracy. 
The optimal value of shape parameter lies between 0.1 
and 1.0, in which the smoothness in the boundary of the 
feasible region is modeled best. 

The penalty parameter shows little influence on the 
prediction accuracy compared to that of the shape 
parameter. The underfitting problem, which is a usual 
consideration in machine learning algorithms, is expected 
to occur for the region where γ and C are smaller than 10-

3 and 106, respectively. 
Fig. 5(b) shows the influence of the γ and C on the 

resultant model complexity. Similar to prediction 
accuracy, the influence of the shape parameter is much 
stronger than that of the penalty parameter. The optimal 
value for shape parameter also lies between 0.1 and 1.0, 
where the prediction accuracy and the model complexity 
both show best performance. 

Fig. 6 shows the relationship between prediction 
accuracy and execution time for SVM. The execution 
time includes the time elapsed for training SVM 
classifier and prediction. The overall trend is that the 
execution time increases as the prediction accuracy 
increase. For the high values of prediction accuracy 
about 97%, the execution time of SVM is rapidly 
increasing while the enhancement in prediction accuracy 
is little. It indicates that the misclassification penalty 
parameter trade-offs marginal enhancement in prediction 
accuracy and execution time of SVM classifier for 
feasibility prediction. 

In using SVM, another point of practical interest is 
that how SVM’s prediction accuracy affects the 
performance of circuit optimizer which uses it as a 
performance meta- model. Since this influence depends 
on the specific candidate selection algorithm used by a 
circuit optimizer, a notional representation of 
optimization process is useful to make a baseline analysis 
independent of the specific algorithm. 

As the most basic approach for candidate selection is 
pure random sampling, a binomial distribution B(n, p) 
can be used as an approximate of optimization process. 
That is, an optimization algorithm with SVM can be 
simplified as independent random trials of selecting n 
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Fig. 5. The influence of SVM parmaeters on (a) prediction 
accuracy, (b) model complexity. The infuence of shape 
parameter (γ) is much stronger than that of the penalty 
parameter (C)  
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Fig. 6. The relationship between the prediction accurcay and 
execution time elapsed for training SVM and predicting 
feasibility based on it 
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candidate designs based on the SVM’s prediction 
accuracy p, where the trial success represents that a 
selected candidate design is proved to be feasible via 
simulation on it.  

With this abstraction of an optimization process, the 
sensitivity of its execution number can be analyzed with 
respect to the prediction accuracy of SVM. For example, 
when the prediction accuracy of SVM in an optimizer 
changes from p to p’, its execution number would also 
change from n to n’. This change in optimization process 
can be represented by introducing another binomial 
distribution B(n’, p’). 

Since two optimization processes are assumed to be 
same in their candidate selection method and the only 
difference is the prediction accuracies of SVMs, they can 
give same quality of optimization when the average 
number of feasible designs among all sampled designs 
remains same. This can be expressed by Eq. (4), since the 
expectation of a binomial distribution is given by the 
product of the success probability (p) and the total 
number of trials (n). 

 
 np n' p'=                 (4) 

 
For example, when an optimization algorithm tries to 

evaluate 100 candidate designs with SVM accuracy of 
60%, the trial number of optimizer can be reduce to 75 
by enhancing the SVM’s prediction accuracy to 80% 
without degrading the average quality of optimized 
design chosen from the optimizer. 

Fig. 7 shows the increase of prediction accuracy and 
execution time as the learning data set grows. For the 
size of learning data approximately larger than 103.5, the 
execution time rapidly increases while the prediction 
accuracy stops showing significant enhancement. 
Considering both execution time and prediction accuracy, 
it indicates that the learning data size should be set to 
1000 - 3000 for training SVM most efficiently in 
optimizing the LC-VCO with the design requirements in 
Table 1, 2. The SVM parameters γ and C were set to 1.0 
and 106. 

The circuit simulations and experiments in the paper 
are performed with TSMC 65nm technology process and 
Python package scikit-learn, which is implemented based 
on libsvm. 

VI. CONCLUSION 

This paper investigated the influences of SVM 
parameters for using it in predicting feasibility of analog 
design parameters with an LC-VCO circuit example. The 
effect of the penalty parameter and the shape parameter 
is analyzed by evaluating the prediction accuracy and the 
model complexity, which are important performances in 
using SVM classifier for simulation-based analog circuit 
optimization. The experimental result indicates that 
setting optimal value for the shape parameter for 
Gaussian kernel is the most important to achieve the high 
prediction accuracy and the low model complexity. Also, 
the trade-off between execution time and marginal 
enhancement in the prediction accuracy is exhibited. The 
result can be generalized for other types of analog 
circuits whose performance surface is smooth. 

ACKNOWLEDGMENTS 

This work was supported by the Technology 
Innovation Program (10049162, Battery-free general 
purpose RF remote controller using piezoelectric single 
crystal) funded By the Ministry of Trade, industry & 
Energy(MI, Korea). CAD tool licenses are supported by 
the IC Design Education Center (IDEC) in Korea. 

REFERENCES 

[1] G. Gielen and R. Rutenbar. “Computer-Aided 

P
re

di
ct

io
n 

A
cc

u
ra

cy
 [

%
]

Ex
ec

ut
io

n 
Ti

m
e(

se
c)100

20

40

60

80

0

240

144

48

Learning Data Size
102.0 102.5 103.0 103.5

Prediction Accuracy
        Execution Time

0

96

192

 

 

Fig. 7. The prediction accuracy and execution time of SVM. 
For learning data size larger than 103.5, the prediction accuracy 
increases marginally while the execution time shows rapid 
increase  

 
 



444 JIHO LEE et al : INVESTIGATIONS ON THE OPTIMAL SUPPORT VECTOR MACHINE CLASSIFIERS FOR PREDICTING … 

 

Design of Analog and Mixed-Signal Integrated 
Circuits,” Proceedings of IEEE, pp. 1825-1852, 
Dec. 2000.   

[2] R. Phelps, et al. “ANACONDA: Simulation-based 
Synthesis of Analog Circuits via Stochastic Pattern 
Search,” Computer-Aided Design of Integrated 
Circuits and Systems, IEEE Transactions on, pp. 
703-717, June, 2000. 

[3] S. Jung, J. Lee, and J. Kim. "Variability-aware, 
discrete optimization for analog circuits." 
Computer-Aided Design of Integrated Circuits and 
Systems, IEEE Transactions on, Vol. 33, No. 8, pp. 
1117-1130, 2014. 

[4] De Bernardinis, et al. "Support vector machines for 
analog circuit performance representation." Design 
Automation Conference DAC 2003. Proceedings. 
IEEE, pp. 964-969, June, 2003.  

[5] T. Kieley and G. Gielen. “Performance modeling of 
analog integrated circuits using least-squares 
support vector machines”, Design, Automation and 
Test in Europe, DATE 2004. Proceedings, IEEE 
Computer Society, pp.16 -20, Feb., 2004.  

[6] D. Boolchandani, et al. “Variability aware yield 
optimal sizing of analog circuits using SVM-
genetic approach”, Symbolic and Numerical 
Methods, Modeling and Applications to Circuit 
Design (SM2ACD), 2010 XIth International 
Workshop on, IEEE, pp.1-6, Oct., 2010. 

[7] C. M. Bishop. “Pattern recognition and machine 
learning” Vol. 4, No. 4, New York: springer. 2006. 

[8] P.B.C. de Miranda, et al. “Combining a multi-
objective optimization approach with metalearning 
for SVM parameter selection,” Systems, Man, and 
Cybernetics (SMC), 2012 IEEE International 
Conference on, pp. 2909- 2914, Oct. 2012. 

[9] O. Chapelle, et al. "Choosing multiple parameters 
for support vector machines." Machine learning, 
Vol. 46, pp. 131-159, 2002. 

[10] J. Kim, et al. "Discretization and discrimination 
methods for design, verification, and testing of 
analog/mixed-signal circuits," Custom Integrated 
Circuits Conference (CICC), 2013 IEEE, Vol. 1, 
No. 8, pp. 22-25, Sept. 2013. 

[11] D. Ham, et al. “Concepts and methods in 
optimization of integrated LC VCOs,” Solid-State 
Circuits, IEEE Journal of, Vol. 36, No. 6, pp. 896-
909, June, 2001. 

Jiho Lee received the B.S. degree in 
electrical engineering from Seoul 
National University, Seoul, Korea, in 
2013. He is currently working toward 
the Ph.D. degree in Seoul National 
University. His research interests 
include design automation of 

analog/mixed-signal system, especially optimization, 
verification and testing of analog circuits. 

 
 

Jaeha Kim is currently Assistant 
Professor at Seoul National Univer- 
sity and his research interests include 
low-power mixed-signal systems and 
their design methodologies. He 
received the B.S. degree in electrical 
engineering from Seoul National 

University in 1997, and received the M.S. and Ph.D. 
degrees in electrical engineering from Stanford 
University in 1999 and 2003, respectively. Prior to 
joining Seoul National University in 2010, Dr. Kim was 
with Stanford University, CA as Acting Assistant 
Professor from 2009 to 2010, with Rambus, Inc., Los 
Altos, CA as Principal Engineer from 2006 to 2009, and 
with Inter-university Semiconductor Research Center 
(ISRC) in Seoul National University, Seoul, Korea as 
Post-doctoral Researcher from 2003 to 2006. From 2001 
to 2003, he was with True Circuits, Inc., Los Altos, CA 
as Circuit Designer. 

 
 
 
 
 


