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Abstract—H-field EMI measurements have been 
performed for the single-ended, the differential, and 
the pseudo-differential signaling on a 11” FR4 
microstrip line. The pseudo-differential signaling 
reduces EMI by more than 10 dB compared to the 
single-ended signaling if the delay mismatch is lower 
than 5% of a period for a 3 GHz clock signal. 
Empirical H-field equations for both differential and 
single-ended signaling showed fair agreements with 
measurements.    
 
Index Terms—EMI, pseudo-differential signaling, H-
field measurement, SDRAM interface  

I. INTRODUCTION 

As the operating clock frequency of electronic circuits 
reaches GHz range, the electromagnetic interference 
(EMI) becomes a serious issue. All electronic 
equipments are required to meet the FCC or CISPR 
specification. SDRAMs (synchronous dynamic random 
access memories) are widely used in electronic 
equipments; SDRAMs are connected to a memory 
controller through many parallel single-ended data lines 
(DQ) and a pair of differential clock lines (DQS). With 
the DDR3 standard, because the data rate of SDRAM 
interface is faster than 1Gbps, the rise and fall times of 
the data signal are much smaller than 1ns. These fast 

rising and falling signals impose a serious EMI problem 
especially in mobile electronic equipments [1]. The 
single-ended signaling used for the SDRAM interface 
generates much larger EMI than the differential signaling. 
Recently, a pseudo-differential signaling is proposed for 
the SDRAM interface to reduce EMI [2]. In this work [3], 
the EMI of the single-ended, the differential and the 
pseudo-differential signalings are compared through 
measurements and empirical equations. Section II 
explains the pseudo-differential signaling. Section III 
derives EMI equations. Section IV presents the 
measurement results and comparisons. Section V 
concludes this work.  

II. PSEUDO-DIFFERENTIAL SIGNALING 

The single-ended signaling generates a larger EMI 
than the differential signaling mostly due to the larger 
current-loop area, as shown in Fig. 1. In the SDRAM 
interface with the single-ended signaling, a relatively 
large-area current-loop is generated (Fig. 1(a)) because 
the current-loop is formed through the microstrip line, 
the data pins, the ground pins and the PCB ground plane. 
In the differential signaling, a small-area current-loop is 
generated (Fig. 1(b)) because the current loop is formed 
along the pair of the microstrip differential transmission 
line without going through the PCB ground plane [4]. 
Because EMI intensity is proportional to the current-loop 
area, the differential signaling generates a much less EMI. 

The transceiver circuit and the current flow of the 
single-ended and the differential signalings are shown in 
Fig. 2.  

In the conventional single-ended signaling, the code is 
unbalanced; the number of 1’s needs not be the same as 
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the number of 0’s at a given time. When a 4-bit parallel 
data is ‘1110’ at a given time, the current flows to the 
right at 3 transmission lines and to the left at 1 
transmission line (Fig. 3(a)). This unbalanced current 
flow generates a far-field EMI. When a balanced code is 
used in the single-ended signaling as in Fig. 3(b); the 4-
bit parallel data ‘1100’ generates a balanced current flow 
and hence a zero far-field EMI [1]. The common-mode 
voltage at RX (vcm) is assume to be the center value of 
the signal swing at the RX input.  

III. EMI 

The EMI magnitude ( rH , θH ) equations are well 
established [5] as follows for a magnetic dipole with the 
momentum of m0; m0 is the loop current (I) times the 
loop area(A) (Fig. 4(a)).  
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Fig. 1. Current loop (a) single-ended, (b) differential 
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Fig. 2. Transceiver circuit (a) single-ended, (b) differential 
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Fig. 3. Comparison (a) conventional single-ended, (b) pseudo-differential 
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where r is the distance between the measurement point 
and the center point of the magnetic dipole. ω  is the 
angular frequency( 2πf ) of the signal, k is the wave 

number(
2πf

c
); f is the signal frequency in Hertz and c is 

the propagation velocity along the transmission line. θ is 
the angle of the line from the magnetic dipole center 
point to the measurement point and the line 
perpendicular to the magnetic dipole plane. The EMI 
equations for a magnetic dipole can be extended to the 
case of differential and single-ended transmission lines 
(Fig. 4(b) and (c)). For the far-field EMI, the loop area is 
the area formed by the two top microstrip lines in the 
case of differential signaling (Fig. 4(b)). In the case of 
single-ended signaling (Fig. 4(c)), the loop area 
corresponds to the area formed by the top microstrip line 
and the mirror microstrip line that is symmetrical to the 
top microstrip line with respect to the ground plane. 
Hence, the maximum EMI occurs along the z axis 
( θ =0o) in the differential signaling. Similarly, the 
maximum EMI occurs along the y axis ( θ =90o, f =90o) 
in the single-ended signaling. For the near-field EMI, the 
long transmission line can be decomposed into many 
small loops connected in series along the transmission 
line. By following this reasoning for the differential 
transmission line (Fig. 4(b)), the H-fields at the center of 
transmission line can be derived as follows; the vertical 
distance or from the center point of the transmission line 
is assumed to be much larger than the length (L) of 
transmission line.  
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where W is the spacing between the two top microstrip 
lines of Fig. 4(b). For the case of the single-ended 
signaling (Fig. 4(c)), rH and θH are interchanged and 
W is replaced by 2D.  

To measure the EMI pattern along the transmission 
line for the cases of the RX termination ( L oR Z )=  and 
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Fig. 4. (a) Magnetic dipole, (b) differential signaling, (c) single-
ended signaling 
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the RX open circuited ( LR ¥= ), the equation of the 
current (I(z,t)) along the transmission line is derived as 
follows for the case of the RX open circuited. A single 
angular frequency ( ω ) input with the current amplitude 
of oI is applied to the transmission line. 
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where z is the distance from the input, L is the length of 
the transmission line, and t is time. For the case of the 

RX termination, ( ) o
zI z, t I sin ω t
c
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.  

IV. MEASUREMENT RESULTS 

To measure EMI, a 11” FR4 microstrip line is used 
along with a H-field EMI probe with preamplifier 
(Aaronia PBS2), a pulse generator, and a spectrum 
analyzer (Fig. 5(a) and (b)). A H-field EMI probe is used 
instead of a E-field EMI probe, because the H-field probe 
is superior to the E-field probe in the noise immunity. 
The H-field(H) was extracted from the measured 
spectrum analyzer output(dBm) by using the 
transformation equation [6]. 
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Both a single-ended and a differential microstrip lines 

are used for the measurement; the cross-section of the 
microstrip lines are shown in Fig. 5(c). The dielectric 
constant and the loss tangent of the FR4 materials are 4.2 
and 0.017, respectively. The loss parameters ( α, β ) are 

extracted from the 21S measurement (Fig. 6). The 
HSPICE W-loss-model is used in this work.  
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To perform the EMI measurement for the single-ended, 
the differential and the pseudo-differential cases by using 
a differential microstrip line, the 2 output ports of a dual-
output differential PRBS generator (Agilent 81134A) are 
connected to the A and B nodes of the differential 
microstrip line in 4 ways (Fig. 7). SMA cables are used 
for this connection. Port1 and port2 of the PRBS 
generator supplies clock signals with the same frequency. 
For the differential signaling, the D node of port1 and the 
DB node of port2 are connected to the A and B nodes of 
the microstrip line, respectively, with the 0 delay. The 

50W  

(a) 
 

0.354

0.2mm

0.035mm

0.035mm

0.354 mm

4.2 / 0.017
FR-4 0.2mm

0.035mm

0.035mm

0.127 0.354

copper 

copper 

copper copper 

copper 

4.2 / 0.017
FR-4

 

              (b)                 (c) 

Fig. 5. (a) measurement setup, (b) photograph of (a), (c) cross-
section of microstrip lines  
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Fig. 6. Measured and calculated 21S  (11” FR4 microstrip 
line) 
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pseudo-differential signaling uses the same connection as 
the differential signaling with the delay ranging from 0 to 
167 ps.  

A H-field EMI probe was placed at a position that is 
1mm above the center point along the microstrip line by 
applying 3 GHz pulse signals with a swing from -1 V to 
+1 V to the microstrip lines. The measured EMI ( θH ) of 
the differential signaling is lower than that of the single-
ended signaling by 28 dB (Fig. 8). The measured EMI 
( θH ) of the pseudo-differential signaling changes from 
that of the differential signaling toward that of the single-
ended signaling with the increase of delay. A 6.7 ps delay 
(2% of a period at 3 GHz) mismatch between 2 signals 
increases the H-field EMI by 10 dB above the differential 
EMI. Similarly a 16.7 ps (5% of a period at 3 GHz) 
mismatch decreases the H-field by 10 dB below the 
single-ended EMI.  

The rH and θH measurements at different clock 
frequencies (125 MHz~1 GHz) also show that the 

differential signaling generates a much lower EMI than 
the single-ended signaling (Fig. 9(a) and (b)).  

Empirical equations (Table 1) have been derived for 
the measured rH  and θH  based on the high frequency 
approximation of Eqs. (1, 2). d=0.5L in Table 1, where L 
is the length of microstrip line (280 mm). Fair 
agreements can be observed between measurements and 
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Table 1. Empirical equations derived for measured rH and θH  
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empirical equations (Fig. 10).  
Measured rH at the RX end of the microstrip line 

clearly shows the standing wave pattern when the RX 
end of the microstrip line is open circuited (Fig. 11(b)) 
compared to the case when the RX end is terminated (Fig. 
11(a)). 

 

V. CONCLUSIONS 

Comparison of EMI between the single-ended and the 
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signaling generates a larger EMI because of the larger 
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rH

1 2 3 4 5 6 7
0.01

0.1

1

10

H-
fie

ld
 (m

A/
m

)

ro (mm)

 125MHz measure
 250MHz measure
 500MHz measure
 1000MHz measure
 125MHz equation
 250MHz equation
 500MHz equation
 1000MHz equation

     

1 2 3 4 5 6 7
0.1

1

10

H-
fie

ld
 (m

A/
m

)

ro (mm)

 125MHz measure
 250MHz measure
 500MHz measure
 1000MHz measure
 125MHz equation
 250MHz equation
 500MHz equation
 1000MHz equation

 

                                  (a)                                           (b) 
 

1 2 3 4 5
1

10

100

H-
fie

ld
 (m

A/
m

)

ro (mm)

 125MHz measure
 250MHz measure
 500MHz measure
 1000MHz measure
 125MHz equation
 250MHz equation
 500MHz equation
 1000MHz equation

rH

     

1 2 3 4 5
1

10

100

H-
fie

ld
 (m

A/
m

)

ro (mm)

 125MHz measure
 250MHz measure
 500MHz measure
 1000MHz measure
 125MHz equation
 250MHz equation
 500MHz equation
 1000MHz equation

θH

 

                                (c)                                             (d) 

Fig. 10. Comparison of measurements and empirical equations (Table 1) (a) Hr differential, (b) Hq  differential, (c) Hr single-
ended, (d) Hq single-ended 
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Fig. 11. Measured rH at the RX end of microstrip line (a) 50 Ohm termination at RX, (b) open circuited at RX 
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reduces EMI by more than 10 dB if the delay mismatch 
is below 5% of a period at 3 GHz. A H-field EMI 
measurement has been performed for the single-ended, 
the differential, and the pseudo-differential signaling on a 
11” FR4 microstrip lines. The measured single-ended 
EMI is much larger than the differential EMI. Empirical 
equations on H-field EMI have been derived for both 
differential and single-ended signaling based on the EMI 
equations for a magnetic dipole. The derived equations 
showed fair agreements with measurements. Also, the H-
field measurements on an open circuited transmission 
line clearly showed the existence of standing waves. 
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