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Abstract—We have grown AlN/GaN heterostructure 
which is a promising candidate for mm-wave 
applications. For the growth of the high quality very 
thin AlN barrier, indium was introduced as a 
surfactant at the growth temperature varied from 750 
to 1070 ˚C, which results in improving electrical 
properties of two-dimensional electron gas (2DEG). 
The heterostructure with barrier thickness of 7 nm 
grown at of 800˚C exhibited best Hall measurement 
results; such as sheet resistance of 215 Ω/□, electron 
mobility of 1430 cm2/V·s, and two-dimensional 

electron gas (2DEG) density of 2.04 ｘ 1013 /cm2. The 

high electron mobility transistor (HEMT) was 
fabricated on the grown heterostructure. The device 
with gate length of 0.2 µm exhibited excellent DC and 
RF performances; such as maximum drain current of 
937 mA/mm, maximum transconductance of 269 
mS/mm, current gain cut-off frequency of 40 GHz, 
and maximum oscillation frequency of 80 GHz. 
 
Index Terms — AlN/GaN heterostructure, indium 
surfactant, HEMT, hall measurement 

I. INTRODUCTION 

AlGaN/GaN heterostructure has been widely 

researched for high frequency and high power 
applications due to the superior material properties of 
nitride-based material, such as wide bandgap, high 
saturation velocity and breakdown electric field [1, 2]. 
To obtain high cut-off frequency (fT), it is essential to 
reduce the gate length and also the barrier thickness of 
the device must be reduced, otherwise the device suffers 
from severe short channel effects (SCEs), which causes a 
degradation of device performance [3, 4]. Unfortunately, 
the conventional AlGaN/GaN heterostructure shows  
poor electrical properties when the thickness of the 
AlGaN barrier becomes thinner than ~ 10 nm, reducing 
the two-dimensional electron gas (2DEG) density and  
decreasing the 2DEG mobility mainly due to the 
degraded crystalline quality of the AlGaN layer and 
insufficient piezoelectric polarization [5].  

AlN/GaN heterostructure becomes an attractive 
alternative due to its strong polarization and large 
bandgap discontinuity [6-9]. The heterostucture even 
with ultra-thin AlN barrier has a great advantage of 
obtaining high 2DEG density, almost two times larger 
than that of conventional AlGaN/GaN heterostructure, 
which allows us to achieve excellent device performance 
in mm-wave applications. 

In this paper, we report on the growth of AlN/GaN 
heterostructure using indium-surfactant with various 
growth temperature and thickness of AlN barrier [10, 11]. 
The 2DEG properties, epitaxial quality of AlN barrier, 
and surface roughness were estimated by Hall 
measurement, X-ray diffraction (XRD) and atomic force 
microscopy (AFM) measurement, respectively. In 
addition, the basic DC and RF performances were also 
measured from the high electron mobility transistor 
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(HEMT) fabricated on the proposed AlN/GaN 
heterostructure. 

II. EXPERIMENTAL DETAILS 

Fig. 1 shows the schematic of AlN/GaN HEMT with T 
shaped gate. The device structure was grown on the 
sapphire substrate by metal-organic chemical vapor 
deposition (MOCVD). Trimethylgallium (TMGa), 
trimethylaluminum (TMAl), ammonia (NH3) and 
trimethylindium (TMIn) were used as the sources of Ga, 
Al, N, and In, respectively. 50 nm-thick initial GaN 
nucleation layer was grown at low-temperature of 525 ˚C. 
2 µm-thick semi-insulating GaN layer was then grown at 
1060˚C, which consists of 1st GaN layer grown with 
pressure of 50 Torr and 2nd GaN layer with 300 Torr. 
After then, the AlN barrier was grown with varying the 
growth temperature from 750 to 1070 °C under pressure 
of 100 torr. The flow rate of NH3 and TMAl was 8000 
and 55 sccm, respectively. The flow rate of TMIn was 
500 sccm, which was used as a surfactant to improve the 
quality of AlN barrier and surface morphology. The 
growth temperature of the AlN layer must be very high, 
usually higher than 1200˚C, which would lead to the 
decomposition of underlying GaN layer due to the high 
growth temperature for the layer. In contrast, the In-
surfactant plays a role of growing a high quality AlN 
barrier layer even at lower growth temperature, which 
also prevents the underlying GaN layer from being 
decomposed [11]. After growing the AlN barrier, GaN 
capping layer for 9 sec was grown sequentially with 
same temperature and pressure of AlN barrier growth. 

For the fabrication of HEMT, MESA isolation was 
first performed by using transformer coupled plasma 
reactive ion etching (TCP-RIE) and 8 nm-thick Al2O3 
layer was deposited by atomic layer deposition (ALD) to 

protect the AlN surface during thermal annealing process 
for ohmic contacts. After then, Si/Ti/Al/Ni/Au metal 
stack was deposited by electron-beam evaporator for 
source and drain ohmic contacts with rapid thermal 
annealing (RTA) at 500˚C for 20 s and 800˚C for 30s in 
nitrogen ambient. The results of transmission line method 
(TLM) measurement shows the contact resitivity of 2.97 

ｘ 10-5 Ω -cm2, contact resistance of 0.84 Ω-mm and 

sheet resistance of 235.09 Ω/□. For forming the gate 
metal, Al2O3 dielectric layer and GaN cap layer under the 
gate were etched, and then the T shaped gate metal of 
Ni/Au was deposited by electron beam lithography with 
length and width of 0.2 and 100 µm, respectively. 

III. RESULTS AND DISCUSSION 

Table 1 shows the 2DEG properties depending on the 
growth temperature and thickness of the AlN barrier by 
using Hall measurement. When the thickness of the AlN 
barrier layer is 5 nm (or < 5 nm) the electrical properties 
of the heterostructure were not satisfactory regardless of 
the growth temperature from 750 and 1070 ˚C. The 
carrier concentration and the carrier mobility were far 
below than  expected. However, the quite reasonable 
quality was obtained at the growth temperature of 800 ˚C, 
which might indicate that the temperature is the 
optimized growth temperature. The (002) HR-XRD 2θ-ω 
scan at Korea Basic Science Institute (KBSI) in Fig. 2 
shows that the 5 nm-thick AlN grown at 800 ˚C has 
better crystalline quality than others, even though the 
difference was not apparent because the thickness of the 

 

Fig. 1. Schematic of AlN/GaN HEMT with T shaped gate 
 

 

Table 1. Properties of 2DEG for the AlN/GaN heterostructures 
with different AlN thickness grown under various growth 
temperatures. 

Growth 
temperature, 

[˚C] 

Sheet resistance 
[Ω/□] 

Electron 
mobility 
[cm2/V·s] 

2DEG density 
[ｘ1013/cm2] 

750 (5 nm) 17520 32 1.11 
5 nm 323 1280 1.51 
6 nm 250 1330 1.88 800 

7 nm 215 1430 2.04 
850 (5 nm) 350 1110 1.61 
950 (5 nm) 632 569 1.71 
1070 (5 nm) 18020 37 0.93 
1090 (5 nm) 

(without surfactant) 8404 37.6 1.97 
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AlN layer is very thin. As shown in Fig. 2, it is true that 
the AlN layer grown with In-surfactant may not be a 
perfect AlN layer in composition, but rather results in 
growth of AlxIn1-xN layer with very small In-composition, 
expected from the peak position of AlInN and AlN layer 
[12]. The heterostructure grown at 800 ˚C also has better 
surface morphology with RMS roughness of 0.601 nm as 
shown in Fig. 3. The effect of In-surfactant are shown 
clearly in Table 1, which indicates the poor sheet 
resistance of 8404 Ω/□ and electron mobility of 37.6 
cm2/V·s for the AlN/GaN heterostructure grown without 
In-surfactant. The quality of the heterostructure was 
improved as the thickness of the AlN layer increased to 7 

nm, exhibiting 2DEG density of 2.04 ｘ 1013 /cm2 

(approximately two times larger than the value obtained 
from the conventional AlGaN/GaN heterostructure), 
electron mobility of 1430 cm2/V·s, and sheet resistance 
of 215 Ω/□, which are comparable to the values obtained 
from other groups [13, 14]. Growth optimization is still 
needed to further increase the 2DEG density and the 
carrier mobility. 

The 7 nm-thick AlN/GaN heterostructure grown at 
800˚C was used to fabricate HEMT with the gate length 
and width of 0.2 and 100 µm, respectively. The threshold 
voltage of the device was about - 3.5 V extrapolated from 
transfer I-V characteristics and the device exhibited high 
maximum drain current (ID,max) of 937 mA/mm at a gate 
bias of 1 V and high maximum extrinsic transconductance 
(gm,max) of 269 mS/mm at a drain bias of 10 V as shown 
in Fig. 4. These excellent DC performances are believed 
to be due to high 2DEG density and high carrier mobility 
of the AlN/GaN heterostructure. In addition, the gate 
leakage current of 4.3 ｘ 10-5 A/mm is also comparable 
to that obtained from other groups [15, 16]. The device 
exhibited, as shown in Fig. 5, the fT of 40 GHz and the 
maximum oscillation frequency (fmax) of 80 GHz 
extrapolated from the short circuit current gain and 
maximum stable gain at a gate bias of - 3.4 V and a drain 
bias of 10 V, respectively. These RF performances are 

 

Fig. 2. Results of (002) HR-XRD 2θ-ω scan for 5 nm-thick AlN 
barrier with various growth temperatures 

 
 

 

           
                         (a)                          (b)                          (c) 
 

      
                                      (d)                          (e) 

Fig. 3. 3D views of AFM images and RMS roughness with various growth temperature (a) 750˚C, (b) 800˚C, (c) 850˚C, (d) 950˚C,
(e) 1070˚C 
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reasonable, but not high enough considering the device 
exhibits excellent DC performances. To further improve 
the RF performances, it is required to optimize the device 
fabrication such as better ohmic contact formation and 
gate metallization process. 

IV. CONCLUSIONS 

High quality AlN/GaN heterostructure has been 
successfully grown by using In-surfactant. The optimized 
growth temperature of the AlN barrier was 800 ˚C. The 
HEMT fabricated on the proposed AlN/GaN heterostructure 
with AlN barrier thickness of 7 nm shows promising 
device performances for mm-wave applications such as 
ID,max of 937 mA/mm, gm,max of 269 ms/mm, fT of 40 GHz 
and fmax of 80 GHz. 
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Fig. 4. The DC characteristics of the device (a) ID –VD characteristics, (b) transfer I-V characteristics in saturation region, (c) gate 
leakage current 

 

 

Fig. 5. The small-signal characteristics of the device: the 
current gain cut-off frequency (fT) and the maximum oscillation 
frequency (fmax) 
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