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Abstract—It is essential to acquire an accurate and 
simple technique for extracting the interface trap 
density (Dit) in order to characterize the normally-off 
gate-recessed AlGaN/GaN hetero field-effect transistors 
(HFETs) because they can undergo interface trap 
generation induced by the etch damage in each 
interfacial layer provoking the degradation of device 
performance as well as serious instability. Here, the 
frequency-dependent capacitance-voltage (C-V) method 
(FDCM) is proposed as a simple and fast technique 
for extracting Dit and demonstrated in normally-off 
gate-recessed AlGaN/GaN HFETs. The FDCM is 
found to be not only simpler than the conductance 
method along with the same precision, but also much 
useful for a simple C-V model for AlGaN/GaN HFETs 
because it identifies frequency-independent and bias-
dependent capacitance components.    
 
Index Terms—normally-off, gate-recessed, AlGaN/GaN 
HFETs, interface trap density, frequency-dependent 
C-V.   
 

I. INTRODUCTION 

GaN-based high electron mobility transistors 
(HEMTs) have been recognized as attractive candidates 
for high power and high frequency applications under 
high temperature due to its beneficial features, such as 
maximum frequency of oscillations, low specific on-
resistance, and high breakdown voltage. However, in the 
case of Schottky-gate HEMTs, there has been remaining 
problems of large off-state leakage and collapse current 
which result from a high density of the surface and 
interface traps [1]. Then the AlGaN/GaN Heterojunction 
field-effect transistors (HFETs) with the gate-recessed 
metal-oxide-semiconductor structures were proposed 
as propitious devices for the normally-off GaN-based 
HEMT with advantages, such as a thin barrier layer, low 
gate leakage, and high breakdown voltage [2-4]. 

For such reasons, the density of interface traps (Dit) 
should be exactly characterized especially with the gate-
recessed AlGaN/GaN HFETs because they undergo the 
trap generation induced by the etch damage in each 
interfacial layer, which would cause the degradation of 
device performance as well as serious instability [5-7]. A 
high Dit is well known to be affecting the degradation of 
response time, trap effect of current transient, frequency 
dispersion, mobility, subthreshold swing and low 
frequency noise [8]. Several methods such as deep-level 
transient spectroscopy (DLTS) [9], conductance method 
(CM) [6], and differential ideality factor technique 
(DIFT) [10], have been employed in extracting Dit. 
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However, these methods have some drawbacks, such as 
requiring many parameters, which need to be 
experimentally extracted, and somewhat complicated 
measurement setup as well as such a narrow range of 
available energy levels. 

In this work, we demonstrate the Dit extraction by 
using the frequency-dependence of capacitance-voltage 
(C-V) characteristics in the gate-recessed normally-off 
AlGaN/GaN HFETs. The proposed frequency-dependent 
C-V method (FDCM) enables a simple and fast 
extraction of Dit in comparison with the previous 
techniques. Also the CGaN by free carrier and trap 
emission time(τit) can be extracted by FDCM. Therefore, 
the Dit-independent mobility is extracted, helping to 
understand the relation between Dit by gate-recessed 
process and mobility of device and the trap density of 
each interface between layers by using relation of τit - Dit. 
We believe that the FDCM is also very effective and 
adequate for an advanced C-V model for AlGaN/GaN 
HFETs because it identifies the frequency-independent 
and bias-dependent capacitance components while the 
extracted Dit is consistent with that extracted from a 
conventional CM. 

II. DEVICE FABRICATION AND STRUCTURE 

The normally-off gate-recessed AlGaN/GaN HFETs 
used in this study were integrated with a Si substrate as 
shown in Fig. 1.  

The epitaxial layer structure is fabricated with a 4-nm-
thick undoped GaN capping layer, a 20-nm-thick 
undoped Al0.23Ga0.77N barrier, a 1-nm-thick AlN spacer 
layer, and a 1.7-mm-thick i-GaN buffer layer on Si (111) 

substrate. After the mesa isolation using a low-damage 
plasma-etching, both the GaN capping layer and the 
AlGaN barrier in the gate region were fully recessed by 
using Cl2/BCl3-based inductively coupled plasma (ICP) 
reactive ion etching. Then, a 30-nm-thick SiO2 dielectric 
layer was deposited as a gate insulator by ICP chemical 
vapor deposition process. For the source and drain 
contact formation, a Ti/Al/Ni/Au metal stack was 
evaporated and alloyed. The following patterning process 
defined gate regions and a Ni/Au metal stack was 
evaporated for gate contact. The gate-to-drain distance 
(Lgd=Ld+Lex,d in Fig. 1), recessed gate length (Lg), and 
gate-to-source distance (Lgs=Ls+Lex,s) were 15 mm, 2 mm, 
and 3 mm, respectively. 

Fig. 2(a) represents the transfer (IDS-VGS) 
characteristics with various values of VDS which are 
measured at room temperature and dark ambient through 
an Agilent 4156C precision semiconductor parameter 
analyzer. The VT~2 [V] is obtained by the linear 
extrapolation at VDS = 0.1 [V]. Here, the subthreshold 
swing is 0.212 [V/dec] in the range of IDS= 10-12~10-9 [A] 

while the on-resistance(RON) is 9.1 [mW·cm2] at VDS =2 

[V] and VGS=10 [V]. Observed values of device 
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Fig. 1. A schematic view of normally-off gate-recessed 
AlGaN/GaN HFET. Geometrical parameters are the width 
W=100 [mm], Ls=2 [mm], Lex,s=1 [mm], Lg=2 [mm], Lex,d=3 
[mm], Ld=12 [mm], TSiO2= 30 nm, TGaN=4 nm, TAlGaN=20 nm, 
TAlN= 2 nm, and Ti-GaN=1.7 [mm] 
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Fig. 2. (a) The measured transfer (IDS-VGS) characteristics in 
VDS= 0.1 [V], 5.1 [V], and 10.1 [V], (b) the inset figure of the 
measured output (IDS-VDS) characteristics in VGS=0~10 [V], (c) 
The measured CG-DS-VG characteristics with various small-
signal frequencies, (d) The extracted RS (VG) with the inset 
figure of the real part of ZM which is a function of a small 
signal frequency 
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parameters indicate that this device satisfies the 
requirements for high performance, fast switching speed, 
and normally-off switching that are critical for 
commercialization of AlGaN/GaN based power switching 
device.  

Fig. 2(c) shows the frequency-dependent C-V curves 
which are characterized through CM-RM parallel mode of 
an Agilent 4294A precision impedance analyzer. Here, 
CG-DS and VG signify the capacitance and the dc sweep 
voltage between the two terminals, i.e., the gate and the 
source tied with drain. The small-signal amplitude and 
the sweep rate of VG are 0.1 V and 0.5 V/s.  

III. RESULT AND DISCUSSION 

Frequency dependency of the C-V curves is attributed 
to the capture-emission events via the interface and/or 
bulk traps. Also, the parasitic source/drain series 
resistance (RS) affects the frequency dispersion of the C-
V curves. The model and physical assumption are 
analogous to [11], meaning that the measured impedance 
(ZM) in a parallel mode can be decomposed into the 
parallel mode capacitance (CM) and the resistance (RM) as 
a function of Vg under various frequencies as shown in 
Fig. 3(a). Fig. 3(b) also shows the equivalent four-
element model including the effective capacitance of gate 
oxide (CEFF) and series of resistance RS. Then, ZM and 
ZM’ are individually obtained by 
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The RS(VG) can be determined from the value of a real 

part of ZM(VG) which is saturated with increasing frequency 
(the inset of Fig. 2(d)) by employing the assumption of 
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w

w
®¥

=  [12]. In our case, the CEFF 

and RS were extracted from the maximum value of CG-

DS(VG) and the value of a real part of ZM(Vg) at the frequency 
f=1 MHz (Fig. 2(d)), which is based on the approximation 

of [ ] [ ]G G 2 /
lim Re ( , ) Re ( , )M M Mrad s

Z V Z V
w pw

w w
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»  of. The 

CEFF and RS then can be de-embedded from the four-
element model in Fig. 3(b), which is given by Zp. Thus, 
we can obtain the Rp and CP as functions of 

experimentally acquired CM and RM by using ZM=ZM’. 
The following is the process to transform the four-
element model (ZM’) into the physics-based five-element 
model (Fig. 3(c)). Here, the channel impedance (ZCH) is 
composed of Rit, Cit, and CGaN. The Rit is the resistance 
describing the capture-emission process of electrons via 
the interface trap, and Cit and CGaN are the interface trap 
capacitance and the capacitance of GaN bulk layer. 

In Fig. 3(c), ZCH can be derived by 
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Then, Rit

2 is described as follows by using ZCH=Zp 
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Similarly to [11], it was assumed the value of Rit is 

independent of w while it is a function of Vg. Thus, we 
can obtain the Cit(VG) and CGaN(VG) by using the relation 
of Rit(w1)= Rit(w2)=Rit(w3). Here, the w1, w2, and w3 are 
three different frequencies of a small-signal in the Cg-d/s-
Vg measurement. Moreover, we can obtain the f-
independent CG (CG, f-independent) by using the equivalent 
circuit model in Fig. 3(d). The extracted CEFF, CGaN(VG), 
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Fig. 3. (a) Equivalent circuit for the parallel mode impedance 
analyzer, (b) four-element model including the effective 
capacitance of gate oxide (CEFF) and series resistance (Rs), (c) 
physics-based five-element model for frequency-dispersive C-V
characteristics, (d) equivalent model for f-independent C-V
characteristics 
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and CG,f-independent(VG) were shown in the Fig. 4(b) 
Then, the Dit can be extracted as a by  
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where the Dit(VG) can be transformed to Dit(ys) by using 
the relationship between VG and the surface potential ys. 
The nonlinear relation between VG and ys can be also 
obtained from the CG,f-independent(VG) curve (Fig. 4(b)) as 
follows: 
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where the VFB is a flat band voltage. Fig. 4(a) shows the 
relation between Vg and ys, which is calculated from (6). 

Fig. 5(a) shows the Dit-independent mobility extracted 
by using the CG,Cit=0 as by [13] 
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where VDS is the small drain-to-source voltage which 
makes the channel charge density uniform across the 
length of the channel, IDS(VGS) is the drain-to-source 
current, and CG,Cit=0 is gate capacitance by Cit=0 in Fig. 
3(d). The proposed mobility can be used to estimate the 

value of the mobility which can be obtained based on the 
assumption that there are no Dit. Therefore, the Fig. 5(a) 
indicates that the Dit by gate-recessed process affect 
mobility. 

Finally, the Dit(E) can be extracted from Dit(ys) by 
using the relation of E-EC= -qys. Here, the E, EC, and q 
are the energy level in sub-bandgap, the conduction band 
minimum, and the magnitude of single electron charge, 
respectively. Extracted Dit(E) was shown in Fig. 5(b). 
Here, the fselected means the combination of three different 
frequencies which was used in extracting Dit(E); in detail, 
the relation of Rit(w1)= Rit(w2)=Rit(w3) as aforementioned. 
Our result suggests that the extracted Dit(E) is nearly 
independent regardless of the combination of w1, w2, and 
w3. Therefore, it is verified that the proposed FDCM is a 
much simpler and faster method rather than the 
conventional CM because only three different 
frequencies are enough to extract Dit(E). The FDCM-
based Dit(E) was also compared with the CM-based 
Dit(E) as shown in Fig. 5(b). It is found that the FDCM-
based Dit(E) agrees well with the CM-based Dit(E). 
Moreover, the extracted Dit(E) and τit(V) demonstrates 
the range of 1´1012 ~ 6´1013 [cm-2eV-1] and 5´10-5 ~ 
8´10-4 [s], which is consistent with the previous works [1, 
6, 8, 14, 15]. In comparison with CM, the proposed 
FDCM gives abundant information on critical parameters, 
such as CG,f-independent(V), Rit(V), CGaN(V), Cit(V), τit(V), 
Dit(V), and the Dit-independent mobility, which are 
efficiently viable for a simple C-V model of AlGaN/GaN 
HFETs. 
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Fig. 4. (a) The relation between VG and ys which is calculated 
by using (6), (b) the extracted CG,f-independent(VG), CEFF(VG), 
CGaN(VG), and CG,Cit=0(VG) 
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Fig. 5. (a) The comparison of the mobilities extracted by using 
f-independent CG, μFE and μsat. The extracted Dit(E) (b) in a 
semi-log scale. The fselected means the combination of three 
different frequencies which was chosen in the FDCM-based 
extraction of Dit(E). The proposed FDCM was also compared 
with the conventional CM 
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IV. CONCLUSION 

We have demonstrated the Dit extraction by using the 
frequency-dependence of C-V characteristics in the 
normally-off gate-recessed AlGaN/GaN HFETs. Our 
proposed FDCM is not only much efficient than the 
conventional CM maintaining the same precision, but 
also highly effective for a simple C-V model of the 
AlGaN/GaN HFETs because it identifies the frequency-
independent/dependent and bias-dependent capacitance 
components. Also the extracted Dit-independent mobility 
can be widely used to understand the relation between Dit 
by gate-recessed process and mobility of device plus the 
trap density of each interface between layers by using 
relation of τit - Dit. A simple and efficient C-V model is 
substantially important especially in AlGaN/GaN HFETs 
where the interface/surface traps play a very important 
role in switching characteristics and reliability.  
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