DOI QR코드

DOI QR Code

Antioxidant Activities of Ethanol Extracts from Different Parts of the Black Raspberry (Rubus occidentalis) Obtained Using Ultra-sonication

초음파 처리에 의한 검정라즈베리 부위별 에탄올 추출물의 산화방지 활성

  • 김기안 (베리&바이오식품연구소) ;
  • 권지웅 (베리&바이오식품연구소) ;
  • 김용석 (전북대학교 농업생명과학대학 식품공학과) ;
  • 박필재 (고창군 농업기술센터) ;
  • 채규서 (베리&바이오식품연구소)
  • Received : 2015.04.28
  • Accepted : 2015.06.24
  • Published : 2015.08.31

Abstract

This study was carried out to investigate the antioxidant effects of different parts (stems, leaves, and seeds) of the black raspberry for utilization as food materials. Different parts of the black raspberry were subjected to extraction via ultra-sonication extraction methods using water and ethanol at various concentrations (25, 50, 75, and 100%). Antioxidant capability of the extracts were determined by amounts of phenolic compounds, with flavonoid contents, radical scavenging activity, and reducing power. Irrespectively of ethanol concentration, extracts of stem showed the highest total phenolic compounds and antioxidant activities among different parts of black raspberry. The total phenolic compounds extracted from the black raspberry stem using 25 and 50% ethanol showed $348.21{\pm}5.40$ and $343.39{\pm}5.94mg/g$, respectively. Fifty percent ethanol extracts of the black raspberry stem showed the highest DPPH ($EC_{50}$ value: $60.89{\mu}g/mL$) and ABTS radical scavenging activities ($EC_{50}$ value: $82.57{\mu}g/mL$). Further, 25% ethanol extacts of the black raspberry stem ($0.263{\pm}0.004$) was found to have the highest reducing power. The highest antioxidant activity of black raspberry stem indicates that black raspberry stem may be useful source for functional food.

본 연구는 검정라즈베리 부산물인 줄기, 잎 및 씨 초음파 추출물의 산화방지 활성에 미치는 영향을 살펴보고, 산화방지 활성을 가지는 식품 및 의약품의 개발 가능성을 알아보기 위하여 수행되었다. 검정라즈베리 부위별을 물 및 25, 50, 75, 100% 에탄올을 추출용매로 초음파 추출하여 실험을 진행한 결과 총 폴리페놀 함량의 경우 검정라즈베리 줄기의 25, 50% 에탄올 추출물이 각각 $348.21{\pm}5.40$, $343.39{\pm}5.94mg/g$으로 가장 높은 함량을 보였고, 잎은 50% 에탄올 추출물이 $161.06{\pm}3.57mg/g$, 씨의 경우는 75% 에탄올 추출물이 $266.29{\pm}2.51mg/g$으로 나타나 줄기의 총 폴리페놀 함량이 가장 높음을 확인하였다. 페놀성 화합물 10종의 분석 결과 모든 시료에서 갈산과 엘라그산이 가장 높은 함량의 화합물로 분석되었고, 쿼르세틴, 페룰산, 쿠마르산, 카페산, 루틴, 루테올린은 모든 추출물에서 분석되었다. 총 플라보노이드 함량을 측정한 결과에서는 추출용매간에 함량에 차이가 나타나는 것을 확인하였는데, 줄기는 25% 에탄올 추출물이 $76.02{\pm}4.23mg/mL$로 가장 높은 함량을 보였고, 잎의 경우는 50% 에탄올 추출물이 $82.28{\pm}0.54mg/mL$로 가장 높았으며, 씨의 경우는 75% 에탄올 추출물이 $82.40{\pm}2.49mg/mL$로 가장 높게 나타났다. 산화방지 활성 검증을 위한 DPPH 및 ABTS 라디칼 소거활성의 $EC_{50}$ 값을 비교한 결과 총 폴리페놀 함량이 가장 높았던 줄기의 활성이 가장 높았으며, 씨>잎 순으로 높은 라디칼 소거활성을 보였고, 추출용매 조건에 따라서 활성의 차이가 크게 나타났다. 또한 환원력을 측정한 결과에서도 줄기>씨>잎 순으로 높은 환원력을 보였고, 검정라즈베리 부산물인 줄기, 잎 및 씨 모두 높은 수준의 산화방지 활성을 가지는 것으로 확인되었으며, 추출조건으로는 줄기의 경우 25, 50% 에탄올, 잎의 경우 50% 에탄올, 씨의 경우 75% 에탄올 용매 조건에서 산화방지 활성이 가장 우수한 것으로 나타났다. 결과적으로 검정라즈베리 부산물인 줄기, 잎 및 씨 모두 산화방지 활성이 우수한 천연소재로서의 이용이 가능할 것으로 판단되었고, 특히 줄기의 경우 산화방지 활성이 매우 뛰어나 건강기능식품 및 의약품과 같은 산업적 이용 가치가 높을 것으로 판단된다.

Keywords

References

  1. Liyana-Pathirana, CM, Shahidi F, Alasalvar C. Antioxidant activity of cherry laurel fruit (Laurocerasus officinalis Roem.) and its concentrated juice. Food Chem. 99: 121-128 (2006) https://doi.org/10.1016/j.foodchem.2005.06.046
  2. Pyo YH, Lee TC, Logendra L, Rosen RT. Antioxidant activity and phenolic compounds of Swiss chard (Beta vulgaris subspecies cycla) extracts. Food Chem. 85: 19-26 (2004) https://doi.org/10.1016/S0308-8146(03)00294-2
  3. Elzaawely AA, Xuan TD, Koyama H, Tawata S. Antioxidant activity and contents of essential oil and phenolic compounds in flowers and seeds of Alpinia zerumbet (Pers.). Food Chem. 104: 1648-1653 (2007) https://doi.org/10.1016/j.foodchem.2007.03.016
  4. Halliwell B. Antioxidants in human health and disease. Annu. Rev. Nutr. 16: 33-50 (1996) https://doi.org/10.1146/annurev.nu.16.070196.000341
  5. Morrissey PA, O'brien NM. Dietary antioxidants in health and disease. Int. Dairy J. 8: 463-472 (1998) https://doi.org/10.1016/S0958-6946(98)00070-3
  6. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J. Biochem. Cell. B. 39: 44-84 (2007) https://doi.org/10.1016/j.biocel.2006.07.001
  7. Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol. Rev. 89: 27-71 (2009) https://doi.org/10.1152/physrev.00014.2008
  8. Lee YJ, Kim JC, Hwang KT, Kim DH, Jung CM. Quality characteristics of black raspberry wine fermented with different yeasts. J. Korean Soc. Food Sci. Nutr. 42: 784-791 (2013) https://doi.org/10.3746/jkfn.2013.42.5.784
  9. Lee JM, Dossett M, Finn CE. Anthocyanin fingerprinting of true bokbunja (Rubus coreanus Miq.) fruit. J. Funct. Food. 5: 1985-1990 (2013) https://doi.org/10.1016/j.jff.2013.06.006
  10. Nybom N. Cellulose thin layers for anthocyanin analysis, with special reference to the anthocyanins of black raspberries. J. Chromatography A 38: 382-387 (1968) https://doi.org/10.1016/0021-9673(68)85061-7
  11. Park YK, Choi SH, Kim SH, Han JY, Chung HG. Changes in antioxidant activity, total phenolics and vitamin C content during fruit ripening in Rubus occidentalis. Korean J. Plant Res. 20: 461-465 (2007)
  12. Lee MJ, Lee SJ, Choi HR, Lee JH, Kwon JW, Chae KS, Jeong JT, Lee TB. Improvement of cholesterol and blood pressure in fruit, leaf and stem extracts from black raspberry in vitro. Korean J. Medicinal Crop Sci. 22: 177-187 (2014) https://doi.org/10.7783/KJMCS.2014.22.3.177
  13. Wang SY, Lin HS. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J. Agr. Food Chem. 48: 140-146 (2000) https://doi.org/10.1021/jf9908345
  14. Stoner GD, Chen T, Krestry LA, Aziz RM, Reinemann T, Nines R. Protection against esophageal cancer in rodents with lyophilized berries: Potential mechanisms. Nutr. Cancer 54: 33-46 (2006) https://doi.org/10.1207/s15327914nc5401_5
  15. Lee SE, Lee SW, Bang JK, Yu YJ, Seong NS. Antioxidant activities of leaf, stem and root of Panax ginseng C. A. Meyer. Korean J. Medicinal Crop Sci. 12: 237-242 (2004)
  16. Choi JM, Kim KY, Lee SH, Ahn JB. Functional properties of water extracts from different parts of Acanthopanax sessiliflorus. Food Eng. Prog. 15: 130-135 (2011)
  17. Bae YI, Chung YC, Shim KH. Antimicrobial and antioxidant activities of various solvent extract from different parts of loquat (Eriobotrya japonica, Lindl.). Korean J. Food Preserv. 9: 97-101 (2002)
  18. Sa JH, Jin YS, Shin IC, Shim TH, Wang MH. Photoprotective effect and antioxidative activity from different organs of Morus bombycis Koidzumi. Kor. J. Pharmacogn. 35: 207-214 (2004)
  19. Kwon JW, Lee HK, Park HJ, Kwon TO, Choi HR, Song JY. Screening of biological activities to different ethanol extracts of Rubus coreanus Miq. Korean J. Medicinal Crop Sci. 19: 325-333 (2011) https://doi.org/10.7783/KJMCS.2011.19.5.325
  20. Amerine MA, Ough CS. Methods analysis of musts and wines. John Wiley and Sons, New York, NY, USA. pp. 176-180 (1990)
  21. Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 10: 178-182 (2002)
  22. Choi, JS, Lee JH, Park HJ, Kim HG, Young HS, Mun SI. Screening for antioxidant activity of plants and marine algae and its active principles from Prunus davidiana. Kor. J. Pharmacogn. 24: 299-303 (1993)
  23. Arts MJTJ, Haenen GRMM, Voss HP, Bast A. Antioxidant capacity of reaction products limits the applicability of the trolox equivalent antioxidant capacity (TEAC) assay. Food Chem. Toxicol. 42: 45-49 (2004) https://doi.org/10.1016/j.fct.2003.08.004
  24. Oyaizu M. Studies on products of browning reaction: Antioxidant activities of products of browning reaction prepared from glucosamine. Japan J. Nutr. 44: 307-315 (1986) https://doi.org/10.5264/eiyogakuzashi.44.307
  25. Yu HE, Dela Paz LMM, Bae YJ, Lee DH, Park JS, Kwak HS, Kim HK, Lee JS. Screening and extraction condition of antiaging bioactive substances from medicinal plants. J. Korean Soc. Food Sci. Nutr. 34: 1136-1142 (2005) https://doi.org/10.3746/jkfn.2005.34.8.1136
  26. Lee SY, Shin YJ, Park JH, Kim SM, Park CS. An analysis of the Gyungokgo's ingredients and a comparison study on anti-oxidation effects according to the kinds of extract. Kor. J. Herbology 23: 23-136 (2008)
  27. Kwak JH, Choi GN, Park JH, Kim JH, Jeong HR, Jeong CH, Heo HJ. Antioxidant and neuronal cell protective effect of purple sweet potato extract. J. Agric. Life Sci. 44: 57-66 (2010)
  28. Cho YJ, Chun SS, Kwon HJ, Kim JH, Yoon SJ, Lee KH. Comparison of physiological activities between hot-water and ethanol extracts of Bokbunja (Rubus coreasnum F.). J. Korean Soc. Food Sci. Nutr. 34: 790-796 (2005) https://doi.org/10.3746/jkfn.2005.34.6.790
  29. Ahn SI, Bok JI, Son JY. Antioxidative activities and nitrite-scavenging abilities of some phenolic compounds. Korean J. Food cook. Sci. 23:19-24 (2007)
  30. Bhatt LR, Yook CN, Choi HJ, Baek SH. Radical scavenging activity of gallic acid from woodfordia fruticosa flowers. Korean J. Orient. Physiol. Pathol. 22: 903-906 (2008)
  31. Choi SK, Yu QM, Lim EJ, Seo JS. The effects of extraction conditions on the antioxidative effects of extracts from campbell early and muscat bailey a grapevine leaves. J. Korean Soc. Food Sci. Nutr. 42: 168-174 (2013) https://doi.org/10.3746/jkfn.2013.42.2.168
  32. Kim LS, Youn SH, Kim JY. Comparative study on antioxidant effects of extracts from Rubus coreanus and Rubus occidentalis. J. Korean Soc. Food Sci. Nutr. 43: 1357-1362 (2014) https://doi.org/10.3746/jkfn.2014.43.9.1357
  33. Jeong HS, Han JG, Ha JH, Kim Y, Oh SH, Kim SS, Jeong MH, Choi GP, Park UY, Lee HY. Antioxidant activities and skin-whitening effects of nano-encapsuled water extract from Rubus coreanus miquel. Korean J. Medicinal Crop Sci. 17: 83-89 (2009)
  34. Choi SY, Lim SH, Kim JS, Ha TY, Kim SR, Kang KS, Hwang IK. Evaluation of the estrogenic and antioxidant activity of some edible and medicinal plants. Korean J. Food Sci. Technol. 37: 549-556 (2005)
  35. Re R, Pellegrinni N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  36. Sies H. Oxidative stress: Oxidants and antioxidants. Exp. Physiol. 82: 291-295 (1997) https://doi.org/10.1113/expphysiol.1997.sp004024
  37. Lee JH, Jhoo JW. Antioxidant activity of different parts of Lespedeza bicolor and isolation of antioxidant compound. Korean J. Food Sci. Technol. 44: 763-771 (2012) https://doi.org/10.9721/KJFST.2012.44.6.763
  38. Miller NJ, Rice-Evans CA. Spectrophotometric determination of antioxidant activity. Redox Rep. 2: 161-171 (1996)
  39. Bohm V, Schlesier K. Methods to evaluate the antioxidant activity. Prod. pract. Qual. Assess. Food Crop. 3: 55-71 (2004).
  40. Sanchez-Moreno C. Methods used to evaluate the free radical sacavenging activity in foods and biological systems. Food Sci. Technol. Int. 8: 121-137 (2002) https://doi.org/10.1177/1082013202008003770
  41. Jeong JA, Kwon SH, Lee CH. Screening for antioxidative activities of extracts from aerial and underground parts of some edible and medicinal ferns. Korean J. Plant Res. 20: 185-192 (2007)
  42. Park YK, Cho SH, Kim SH, Jang YS, Han JG, Chun HG. Functional composition and antioxidant activity from the fruits Rubus coreanus according to cultivars. J. Korean Wood Sci. Technol. 36: 102-109 (2008)