DOI QR코드

DOI QR Code

Source, Biosynthesis, Biological Activities and Pharmacokinetics of Oxyresveratrol

Oxyresveratrol의 기원, 생합성, 생물학적 활성 및 약물동력학

  • Lim, Young-Hee (School of Biosystem and Biomedical Science, Korea University) ;
  • Kim, Ki-Hyun (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University) ;
  • Kim, Jeong-Keun (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University)
  • 임영희 (고려대학교 보건과학대학 바이오시스템의과학부) ;
  • 김기현 (한국산업기술대학교 생명화학공학과) ;
  • 김정근 (한국산업기술대학교 생명화학공학과)
  • Received : 2015.04.06
  • Accepted : 2015.08.12
  • Published : 2015.10.31

Abstract

Oxyresveratrol (trans-2,3',4,5'-tetrahydroxystilbene) has been receiving increasing attention because of its astonishing biological activities, including antihyperlipidemic, neuroprotection, antidiabetic, anticancer, antiinflammation, immunomodulation, antiaging, and antioxidant activities. Oxyresveratrol is a stilbenoid, a type of natural phenol and a phytoalexin produced in the roots, stems, leaves, and fruits of several plants. It was first isolated from the heartwood of Artocarpus lakoocha, and has also been found in various plants, including Smilax china, Morus alba, Varatrum nigrum, Scirpus maritinus, and Maclura pomifera. Oxyresveratrol, an aglycone of mulberroside A, has been produced by microbial biotransformation or enzymatic hydrolysis of a glycosylated stilbene mulberroside A, which is one of the major compounds of the roots of M. alba. Oxyresveratrol shows less cytotoxicity, better antioxidant activity and polarity, and higher cell permeability and bioavailability than resveratrol (trans-3,5,4'-trihydroxystilbene), a well-known antioxidant, suggesting that oxyresveratrol might be a potential candidate for use in health functional food and medicine. This review focuses on the plant sources, chemical characteristics, analysis, biosynthesis, and biological activities of oxyresveratrol as well as describes the perspectives on further exploration of oxyresveratrol.

Keywords

References

  1. Mongolsuk S, Robertson A, Towers R. 429. 2,4,3',5'-Tetrahydroxystilbene from Artocarpus lakoocha. J. Chem. Soc. 2231-2233 (1957)
  2. Ayinampudi S, Wang YH, Avula B, Smillie TJ, Khan I. Quantitative analysis of oxyresveratrol in different plant parts of Morus species and related genera by HPTLC and HPLC. JPC-J. Planar. Chromatogr. 24: 129-129 (2011)
  3. Shao B, Guo HZ, Cui YJ, Liu AH, Yu HI, Guo H, Xu M, Guo DA. Simultaneous determination of six major stilbenes and flavonoids in Smilax china by high performance liquid chromatography. J. Pharmaceut. Biomed. 44: 737-742 (2007) https://doi.org/10.1016/j.jpba.2007.03.008
  4. Djapic N, Djarmati Z, Filip S, Jankov RM. A stilbene from the heartwood of Maclura pomifera. J. Serb. Chem. Soc. 68: 235-237 (2003) https://doi.org/10.2298/JSC0303235D
  5. Hanawa F, Tahara S, Mizutani J. Antifungal stress compounds from Veratrum grandiflorum leaves treated with cupric chloride. Phytochemistry 31: 3005-3007 (1992) https://doi.org/10.1016/0031-9422(92)83436-3
  6. Kim JK, Kim MJ, Cho SG, Kim MK, Kim SW, Lim YH. Biotransformation of mulberroside A from Morus alba results in enhancement of tyrosinase inhibition. J. Ind. Microbiol. Biot. 37: 631-637 (2010) https://doi.org/10.1007/s10295-010-0722-9
  7. Lorenz P, Roychowdhury S, Engelmann M, Wolf G, Horn TFW. Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: Effect on nitrosative and oxidative stress derived from microglial cells. Nitric Oxide 9: 64-76 (2003) https://doi.org/10.1016/j.niox.2003.09.005
  8. Jo SP, Kim JK, Lim YH. Antihyperlipidemic effects of stilbenoids isolated from Morus alba in rats fed a high-cholesterol diet. Food Chem. Toxicol. 65: 213-218 (2014) https://doi.org/10.1016/j.fct.2013.12.040
  9. Park KT, Kim JK, Lim YH. Deglycosylation of stilbene glucoside compounds improves inhibition of 3-hydroxy-3-methylglutaryl coenzyme a reductase and squalene synthase activities. Food Sci. Biotechnol. 23: 647-651 (2014) https://doi.org/10.1007/s10068-014-0088-2
  10. He H, Lu YH. Comparison of inhibitory activities and mechanisms of five mulberry plant bioactive components against α-glucosidase. J. Agr. Food Chem. 61: 81108119 (2013)
  11. Wu LS, Wang XJ, Wang H, Yang HW, Jia AQ, Ding Q. Cytotoxic polyphenols against breast tumor cell in Smilax china L. J. Ethnopharmacol. 130: 460-464 (2010) https://doi.org/10.1016/j.jep.2010.05.032
  12. Chillemi R, Sciuto S, Spatafora C, Tringali C. Anti-tumor properties of stilbene-based resveratrol analogues: Recent results. Nat. Prod. Commun. 2: 499-513 (2007)
  13. Chung KO, Kim BY, Lee MH, Kim YR, Chung HY, Park JH, Moon JO. In vitro and in vivo anti-inflammatory effect of oxyresveratrol from Morus alba L. J. Pharm. Pharmacol. 55: 1695-1700 (2003) https://doi.org/10.1211/0022357022313
  14. Likhitwitayawuid K, Sritularak B, Benchanak K, Lipipun V, Mathew J, Schinazi RF. Phenolics with antiviral activity from Millettia erythrocalyx and Artocarpus lakoocha. Nat. Prod. Res. 19: 177-182 (2005) https://doi.org/10.1080/14786410410001704813
  15. Andrabi SA, Spina MG, Lorenz P, Ebmeyer U, Wolf G, Horn TFW. Oxyresveratrol (trans-2,3',4,5'-tetrahydroxystilbene) is neuroprotective and inhibits the apoptotic cell death in transient cerebral ischemia. Brain Res. 1017: 98-107 (2004) https://doi.org/10.1016/j.brainres.2004.05.038
  16. Kim JK, Park KT, Lee HS, Kim MJ, Lim YH. Evaluation of the inhibition of mushroom tyrosinase and cellular tyrosinase activities of oxyresveratrol: Comparison with mulberroside A. J. Enzym. Inhib. Med. Ch. 27: 495-503 (2012) https://doi.org/10.3109/14756366.2011.598866
  17. Park KT, Kim JK, Hwang DH, Yoo YM, Lim YH. Inhibitory effect of mulberroside A and its derivatives on melanogenesis induced by ultraviolet B irradiation. Food Chem. Toxicol. 49: 30383045 (2011)
  18. Chatsumpun M, Chuanasa T, Sritularak B, Likhitwitayawuid K. Oxyresveratrol protects against DNA damage induced by photosensitized riboflavin. Nat. Prod. Commun. 6: 41-44 (2011)
  19. Zhang Z, Jin J, Shi L. Protective function of cis-mulberroside A and oxyresveratrol from Ramulus mori against ethanol-induced hepatic damage. Environ. Toxicol. Phar. 26: 325-330 (2008) https://doi.org/10.1016/j.etap.2008.06.008
  20. Powell RG, Bajaj R, McLaughlin JL. Bioactive stilbenes of Scirpus maritimus. J. Nat. Prod. 50: 293-296 (1987) https://doi.org/10.1021/np50050a040
  21. Likhitwitayawuid K, Chaiwiriya S, Sritularak B, Lipipun V. Antiherpetic flavones from the heartwood of Artocarpus gomezianus. Chem. Biodivers. 3: 1138-1143 (2006) https://doi.org/10.1002/cbdv.200690115
  22. Xu L, Liu C, Xiang W, Chen H, Qin X, Huang X. Advances in the study of oxyresveratrol. Int. J. Pharmacol. 10: 44-54 (2014) https://doi.org/10.3923/ijp.2014.44.54
  23. Butt MS, Nazir A, Sultan MT, Schron K. Morus alba L. nature's functional tonic. Trends Food Sci. Tech. 19: 505-512 (2008) https://doi.org/10.1016/j.tifs.2008.06.002
  24. Devi B, Sharma N, Kumar D, Jeet K. Morus alba Linn: A phytopharmacological review. Int. J. Pharm. Pharm. Sci. 5: 14-18 (2013)
  25. Zafar MS, Muhammad F, Javed I, Akhtar M, Khaliq T, Aslam B, Waheed A, Yasmin R, Zafar H. White mulberry (Morus alba): A brief phytochemical and pharmacological evaluations account. Int. J. Agric. Biol. 15: 612620 (2013)
  26. Choi SW, Jang YJ, Lee YJ, Leem HH, Kim EO. Analysis of functional constituents in mulberry (Morus alba L.) twigs by different cultivars, producing areas, and heat processings. Prev. Nutr. Food Sci. 18: 256-262 (2013) https://doi.org/10.3746/pnf.2013.18.4.256
  27. Jeandet P, Delaunois B, Conreux A, Donnez D. Nuzzo V, Cordelier S, Clment C, Courot E. Biosynthesis, metabolism, molecular engineering, and biological functions of stilbene phytoalexins in plants. Biofactors 36: 331-341 (2010) https://doi.org/10.1002/biof.108
  28. Hammerbacher A, Ralph SG, Bohlmann J, Fenning TM, Gershenzon J, Schmidt A. Biosynthesis of the major tetrahydroxystilbenes in spruce, astringin and isorhapontin, proceeds via resveratrol and is enhanced by fungal infection. Plant Physiol. 157: 876-890 (2011) https://doi.org/10.1104/pp.111.181420
  29. Zhou J, Li SX, Wang W, Guo XY, Lu XY, Yan XP, Huang D, Wei BY, Cao L. Variations in the levels of mulberroside A, oxyresveratrol, and resveratrol in mulberries in different seasons and during growth. Sci. World J. 2013: 380692 (2013)
  30. Schrder G, Brown JWS, Schrder J. Molecular analysis of resveratrol synthase: cDNA, genomic clones and relationship with chalcone synthase. Eur. J. Biochem. 172: 161-169 (1988) https://doi.org/10.1111/j.1432-1033.1988.tb13868.x
  31. Bavaresco L, Civardi S, Pezzutto S, Vezzulli S, Ferrari F. Grape production, technological parameters, and stilbenic compounds as affected by lime-induced chlorosis. J. Vitis 44: 63-65 (2005)
  32. Boue SM, Shih BY, Burow ME, Eggleston G, Lingle S, Pan YB, Kim D, Bhatnagar D. Postharvest accumulation of resveratrol and piceatannol in sugarcane with enhanced antioxidant activity. J. Agr. Food Chem. 61: 8412-8419 (2013) https://doi.org/10.1021/jf4020087
  33. Deluc LG, Decendit A, Papastamoulis Y, Merillon JM, Cushman JC, Cramer GR. Water deficit increases stilbene metabolism in Cabernet sauvignon berries. J. Agr. Food Chem. 59: 289-297 (2011) https://doi.org/10.1021/jf1024888
  34. Cantos E, Espn JC, Fernndez MJ, Oliva J, Toms-Barbern FA. Postharvest UV-C-irradiated grapes as a potential source for producing stilbene-enriched red wines. J. Agr. Food Chem. 51: 1208-1214 (2003) https://doi.org/10.1021/jf020939z
  35. Sun HY, Xiao CF, Cai YC, Chen Y, Wei W, Liu XK, Lv ZL, Zou Y. Efficient synthesis of natural polyphenolic stilbenes: Resveratrol, piceatannol and oxyresveratrol. Chem. Pharm. Bull. 58: 1492-1496 (2010) https://doi.org/10.1248/cpb.58.1492
  36. Poopyruchpong N, Rungruangsak K, Nimmanpisut S, Panijpan B, Ratanabanangkoon K. Some physico-chemical properties of 2,4,3',5'-tetrahydroxystilbene. J. Sci. Soc. Thailand 4: 163-167 (1978) https://doi.org/10.2306/scienceasia1513-1874.1978.04.163
  37. Mei M, Ruan JQ, Wu WJ, Zhou RN, Lei JPC, Zhao HY, Yan R, Wang YT. In vitro pharmacokinetic characterization of mulberroside A, the main polyhydroxylated stilbene in mulberry (Morus alba L.), and its bacterial metabolite oxyresveratrol in traditional oral use. J. Agr. Food Chem. 60: 2299-2308 (2012) https://doi.org/10.1021/jf204495t
  38. Song W, Wang HJ, Bucheli P, Zhang PF, Wei DZ, Lu YH. Phytochemical profiles of different mulberry (Morus sp.) species from China. J. Agr. Food Chem. 57: 9133-9140 (2009) https://doi.org/10.1021/jf9022228
  39. Maneechai S, Likhitwitayawuid K, Sritularak B, Palanuvej C, Ruangrungsi N, Sirisa-Ard P. Quantitative analysis of oxyresveratrol content in Artocarpus lakoocha and 'Puag-Haad'. Med. Prin. Pract. 18: 223-227 (2009) https://doi.org/10.1159/000204354
  40. Bertram RM, Takemoto JK, Remsberg CM, Vega-Villa KR, Sablani S, Davies NM. High-performance liquid chromatographic analysis: Applications to nutraceutical content and urinary disposition of oxyresveratrol in rats. Biomed. Chromatogr. 24: 516-521 (2010)
  41. Potter GA, Patterson LH, Wanogho E, Perry PJ, Butler PC, Ijaz T, Ruparelia KC, Lamb JH, Farmer PB, Stanley LA, Burke MD. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. Brit. J. Cancer 86: 774-778 (2002) https://doi.org/10.1038/sj.bjc.6600197
  42. Al-Jumaily EF, Shafiq ZA, Al-Bayati RI. Antihyperlipidemic effects of resvertrol and its derivative on alloxan diabetic rabbits. Che. Sci. Rev. Lett. 2: 278-286 (2013)
  43. Jo SP, Kim JK, Lim YH. Antihyperlipidemic effects of rhapontin and rhapontigenin from Rheum undulatum in rats fed a high-cholesterol diet. Planta Med. 80: 1067-1071 (2014) https://doi.org/10.1055/s-0034-1382999
  44. Vingtdeux V, Dreses-Werringloer U, Zhao H, Davies P, Marambaud P. Therapeutic potential of resveratrol in Alzheimer's disease. BMC Neurosci. 9: S6 (2008)
  45. Ban JY, Jeon SY, Nguyen TTH, Bae KH, Song KS, Seonga YH. Neuroprotective effect of oxyresveratrol from Smilacis chinae Rhizome on Amyloid ${\beta}$ Protein (25-35)-induced neurotoxicity in cultured rat cortical neurons. Biol. Pharm. Bull. 29: 2419-2424 (2006) https://doi.org/10.1248/bpb.29.2419
  46. Breuer C, Wolf G, Andrabi SA, Lorenz P, Horn TFW. Bloodbrain barrier permeability to the neuroprotectant oxyresveratrol. Neurosci. Lett. 393: 113-118 (2006) https://doi.org/10.1016/j.neulet.2005.09.081
  47. Jeon SY, Kwon SH, Seong YH, Bae K, Hur JM, Lee YY, Suh DY, Song KS. ${\beta}$-secretase (BACE1)-inhibiting stilbenoids from Smilax rhizoma. Phytomedicine 14: 403-408 (2007) https://doi.org/10.1016/j.phymed.2006.09.003
  48. Chao J, Yu MS, Ho YS, Wang M, Chang RCC. Dietary oxyresveratrol prevents parkinsonian mimetic 6-hydroxydopamine neurotoxicity. Free Radical Bio. Med. 45: 1019-1026 (2008) https://doi.org/10.1016/j.freeradbiomed.2008.07.002
  49. Richard T, Pawlus AD, Iglsias ML, Pedrot E, Waffo-Teguo P, Merillon JM, Monti JP. Neuroprotective properties of resveratrol and derivatives. Ann. NY. Acad. Sci. 1215: 103-108 (2011) https://doi.org/10.1111/j.1749-6632.2010.05865.x
  50. Weber JT, Lamont M, Chibrikova L, Fekkes D, Vlug AS, Lorenz P, Kreutzmann P, Slemmer JE. Potential neuroprotective effects of oxyresveratrol against traumatic injury. Eur. J. Pharmacol. 680: 55-62 (2012) https://doi.org/10.1016/j.ejphar.2012.01.036
  51. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CWW, Fong HHS, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275: 218- 220 (1997) https://doi.org/10.1126/science.275.5297.218
  52. Nam KA, Kim SH, Heo YH, Lee SK. Resveratrol analog, 3,5,2',4'-tetramethoxy-trans-stilbene, potentiates the inhibition of cell growth and induces apoptosis in human cancer cells. Arch. Pharm. Res. 24: 441-445 (2001) https://doi.org/10.1007/BF02975192
  53. Chowdhury SA, Kishino K, Satoh R, Hashimoto K, Kikuchi H, Nishikawa H, Shirataki Y, Sakagami H. Tumor-specificity and apoptosis-inducing activity of stilbenes and flavonoids. Anticancer Res. 25: 2055-2063 (2005)
  54. Lee SK, Nam KA, Hoe YH, Min HY, Kim EY, Ko HJ, Song SY, Lee TH, Kim SH. Synthesis and evaluation of cytotoxicity of stilbene analogues. Arch. Pharm. Res. 26: 253-257 (2003) https://doi.org/10.1007/BF02976951
  55. Son PS, Park SA, Na HK, Jue DM, Kim SH, Surh YJ. Piceatannol, a catechol-type polyphenol, inhibits phorbol ester-induced NF-${\kappa}B$ activation and cyclooxygenase-2 expression in human breast epithelial cells: Cysteine 179 of IKK${\beta}$ as a potential target. Carcinogenesis 31: 1442-1449 (2010) https://doi.org/10.1093/carcin/bgq099
  56. Tan Y, Liu C, Chen R. Phenolic constituents from stem bark of Morus wittiorum and their anti-inflammation and cytotoxicity. China J. Chin. Mater. Medica 35: 2700-2703 (2010)
  57. Li, H. Resveratrol derivatives as colorectal cancer chemopreventive agents. PhD thesis, The University of Hong Kong, Pokfulam, Hong Kong (2010)
  58. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1${\alpha}$. Cell 127: 1109-1122 (2006) https://doi.org/10.1016/j.cell.2006.11.013
  59. Sun C, Zhang F, Ge X, Yan T, Chen X, Shi X, Zhai Q. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab. 6: 307-319 (2007) https://doi.org/10.1016/j.cmet.2007.08.014
  60. Zabolotny JM, Kim YB. Silencing insulin resistance through SIRT1. Cell Metab. 6: 247-249 (2007) https://doi.org/10.1016/j.cmet.2007.09.004
  61. Koo SH, Montminy M. In vino veritas: A tale of two Sirt1s? Cell 127: 1091-1093 (2006) https://doi.org/10.1016/j.cell.2006.11.034
  62. Minakawa M, Miura Y, Yagasaki K. Piceatannol, a resveratrol derivative, promotes glucose uptake through glucose transporter 4 translocation to plasma membrane in L6 myocytes and suppresses blood glucose levels in type 2 diabetic model db/db mice. Biochem. Bioph. Res. Co. 422: 469-475 (2012) https://doi.org/10.1016/j.bbrc.2012.05.017
  63. Wang S, Fang M, Ma YL, Zhang YQ. Preparation of the branch bark ethanol extract in mulberry Morus alba, its antioxidation, and antihyperglycemic activity In vivo. Evid.-Based Compl. Alt. 2014: 569-652 (2014)
  64. Povichit N, Phrutivorapongkul A, Suttajit M, Leelapornpisid P. Antiglycation and antioxidant activities of oxyresveratrol extracted from the heartwood of Artocarpus lakoocha Roxb. Maejo Int. J. Sci. Tech. 4: 454-461 (2010)
  65. Suhartati T, Yandri, Suwandi JF, Hadi S. In vitro and in vivo antiplasmodial activity of oxyresveratrol and artonine isolated from two Artocarpus plants in Indonesia. Orient. J. Chem. 26: 825-830 (2010)
  66. Ratanabanangkoon K, Poopyruchpong N, Charoensiri K. A preliminary study on the antifungal activity of 2,4,3',5'-tetrahydroxystilbene on dermatophytes. J. Sci. Soc. Thailand 2: 202-205 (1976) https://doi.org/10.2306/scienceasia1513-1874.1976.02.202
  67. Senapong S, Puripattanavong J, Teanpaisan R. Anticandidal and antibiofilm activity of Artocarpus lakoocha extract. Songklanakarin J. Sci. Technol. 36: 451-457 (2014)
  68. Mazimba O, Majinda RRT, Motlhanka D. Antioxidant and antibacterial constituents from Morus nigra. Acad. J. 5: 751-754 (2011)
  69. Phoolcharoen W, Sooampon S, Sritularak B, Likhitwitayawuid K, Kuvatanasuchati J, Pavasant P. Anti-periodontal pathogen and anti-inflammatory activities of oxyresveratrol. Nat. Prod. Commun. 8: 613-616 (2013)
  70. Teanpaisan R, Senapong S, Puripattanavong J. In vitro antimicrobial and antibiofilm activity of Artocarpus lakoocha (Moraceae) extract against some oral pathogens. Trop. J. Pharm. Res. 13: 1149-1155 (2014) https://doi.org/10.4314/tjpr.v13i7.20
  71. Chuanasa T, Phromjai J, Lipipun V, Likhitwitayawuid K, Suzuki M, Pramyothin P, Hattori M, Shiraki K. Anti-herpes simplex virus (HSV-1) activity of oxyresveratrol derived from Thai medicinal plant: Mechanism of action and therapeutic efficacy on cutaneous HSV-1 infection in mice. Antivir. Res. 80: 62-70 (2008) https://doi.org/10.1016/j.antiviral.2008.05.002
  72. Sasivimolphan P, Lipipun V, Ritthidej G, Chitphet K, Yoshida Y, Daikoku T, Sritularak B, Likhitwitayawuid K, Pramyothin P, Hattori M, Shiraki K. Microemulsion-based oxyresveratrol for topical treatment of herpes simplex virus (HSV) infection: Physicochemical properties and efficacy in cutaneous HSV-1 infection in mice. AAPS Pharm. Sci. Tech. 13: 1266-1275 (2012) https://doi.org/10.1208/s12249-012-9828-x
  73. Sasivimolphan P, Lipipun V, Likhitwitayawuid K, Takemoto M, Pramyothin P, Hattori M, Shiraki K. Inhibitory activity of oxyresveratrol on wild-type and drug-resistant varicella-zoster virus replication in vitro. Antivir. Res. 84: 95-97 (2009) https://doi.org/10.1016/j.antiviral.2009.07.010
  74. Wang WX, Qian JY, Wang XJ, Jiang AP, Jia AQ. Anti-HIV-1 activities of extracts and phenolics from Smilax china L. Pak. J. Pharm. Sci. 27: 147-151 (2014)
  75. Galindo I, Hernez B, BernJ, Fenoll J, Cenis JL, Escribano JM, Alonso C. Comparative inhibitory activity of the stilbenes resveratrol and oxyresveratrol on African swine fever virus replication. Antivir. Res. 91: 57-63 (2011) https://doi.org/10.1016/j.antiviral.2011.04.013
  76. Sureda A, Tejada S, del Mar Bibiloni M, Antoni Tur J, Pons A. Polyphenols: Well beyond the antioxidant capacity: Polyphenol supplementation and exercise-induced oxidative stress and inflammation. Curr. Pharm. Biotechno. 15: 373-379 (2014) https://doi.org/10.2174/1389201015666140813123843
  77. Alam MA, Subhan N, Rahman MM, Uddin SJ, Reza HM, Sarker SD. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv. Nutr. 5: 404-417 (2014) https://doi.org/10.3945/an.113.005603
  78. Flamini R, Mattivi F, de Rosso M, Arapitsas P, Bavaresco L. Advanced knowledge of three important classes of grape phenolics: Anthocyanins, stilbenes and flavonols. Int. J. Mol. Sci. 14: 19651-19669 (2013) https://doi.org/10.3390/ijms141019651
  79. Aftab N, Likhitwitayawuid K, Vieira A. Comparative antioxidant activities and synergism of resveratrol and oxyresveratrol. Nat. Prod. Res. 24: 1726-1733 (2010) https://doi.org/10.1080/14786410902990797
  80. Oh H, Ko EK, Jun JY, Oh MH, Park SU, Kang KH, Lee HS, Kim YC. Hepatoprotective and free radical scavenging activities of prenylflavonoids, coumarin, and stilbene from Morus alba. Planta Med. 68: 932-934 (2002) https://doi.org/10.1055/s-2002-34930
  81. Mouihate A, Horn TF, Pittman QJ. Oxyresveratrol dampens neuroimmune responses in vivo: A selective effect on TNF-${\alpha}$. Am. J. Physiol.-Reg. I. 291: R1215-R1221 (2006)
  82. Choi EM, Hwang JK. Effects of Morus alba leaf extract on the production of nitric oxide, prostaglandin $E_2$ and cytokines in RAW264.7 macrophages. Fitoterapia 76: 608-613 (2005) https://doi.org/10.1016/j.fitote.2005.05.006
  83. Fang SC, Hsu CL, Yen GC. Anti-inflammatory effects of phenolic compounds isolated from the fruits of Artocarpus heterophyllus. J. Agr. Food Chem. 56: 4463-4468 (2008) https://doi.org/10.1021/jf800444g
  84. Chen YC, Tien YJ, Chen CH, Beltran FN, Amor EC, Wang RJ, Wu DJ, Mettling C, Lin YL, Yang WC. Morus alba and active compound oxyresveratrol exert anti-inflammatory activity via inhibition of leukocyte migration involving MEK/ERK signaling. BMC Complem. Altern. M. 13: 45 (2013) https://doi.org/10.1186/1472-6882-13-45
  85. Bharani SE, Asad M, Dhamanigi SS, Chandrakala GK. Immunomodulatory activity of methanolic extract of Morus alba Linn.(mulberry) leaves. Pak. J. Pharm. Sci. 23: 63-68 (2010)
  86. Qiu F, Komatsu K, Saito K, Kawasaki K, Yao X, Kano Y. Pharmacological properties of traditional medicines. XXII. Pharmacokinetic study of mulberroside A and its metabolites in rat. Biol. Pharm. Bull. 19: 1463-1467 (1996) https://doi.org/10.1248/bpb.19.1463
  87. Huang HL, Zhang JQ, Chena GT, Lu ZQ, Sha N, Guo DA. Simultaneous determination of oxyresveratrol and resveratrol in rat bile and urine by HPLC after oral administration of Smilax china extract. Nat. Prod. Commun. 4: 825-830 (2009)
  88. Huang H, Chen G, Lu Z, Zhang J, Guo DA. Identification of seven metabolites of oxyresveratrol in rat urine and bile using liquid chromatography/tandem mass spectrometry. Biomed. Chromatogr. 24: 426-432 (2010)
  89. Tian F, Wei H, Jia T, Tian H. An improved highly sensitive method to determine low oxyresveratrol concentrations in rat plasma and its pharmacokinetic application. Biomed. Chromatogr. 28: 667-672 (2014) https://doi.org/10.1002/bmc.3087

Cited by

  1. The inclusion complex of oxyresveratrol in modified cyclodextrins: A thermodynamic, structural, physicochemical, fluorescent and computational study vol.232, 2017, https://doi.org/10.1016/j.foodchem.2017.04.027
  2. Single- and Repeated-Dose Oral Toxicity in Rats and Bacterial Reverse Mutation Test of Morus alba L. Extracts vol.45, pp.10, 2016, https://doi.org/10.3746/jkfn.2016.45.10.1406
  3. Oxyresveratrol-induced DNA cleavage triggers apoptotic response in Candida albicans vol.164, pp.9, 2018, https://doi.org/10.1099/mic.0.000696