DOI QR코드

DOI QR Code

Numerical Analysis of Cold Storage System with Array of Solid-Liquid Phase Change Module

저온의 고-액상변화 모듈 용기의 배열에 따른 축냉시스템의 수치해석

  • Mun, Soo-Beom (Training Center of Ship Operation, Kunsan Naitonal Korea University)
  • 문수범 (군산대학교 선박실습운영센터)
  • Received : 2015.09.30
  • Accepted : 2015.10.27
  • Published : 2015.10.31

Abstract

This paper is the fundamental study for the application of cold storage system to the transportation equipment by sea and land. This numerical study presents the solid-liquid phase change phenomenon of calcium chloride solution of 30wt %. The governing equations are 1-dimensional unsteady state heat transfer equations of $1^{st}$ order partial differential equations. This type of latent heat storage material is often usable in fishery vessel for controlling the temperature of container with constant condition. The governing equation was discretized with finite difference method and the program was composed with Mathcad program. The main parameters of this solution were the initial temperature of heat storage material, ambient temperature of cold air and the velocity of cold air. The data of boundary layer thickness becomes thin with the increasing of cold air flowing velocity and also the heat storage completion time become shorten.

본 논문은 육해상의 운송장치에 축냉시스템을 적용시키기 위한 기초 연구이다. 또한, 축냉재의 고액상변화에 대한 수치해석을 수행한 연구이다. 수치해석법으로는 유한차분법(Finite-Difference Method)을 이용하였으며, 1차원 비정상의 상태를 가정하여 계산하였다. 또한 용기는 직사각형의 구형용기로 가정하여 대칭의 조건을 이용하였다. 축냉을 목적으로 사용하는 열매체는 염화칼슘 수용액($CaCl_2$) 30wt%의 물성치를 사용하여 계산을 수행하였다. 계산에 영향을 미치는 요소로는 냉동고의 냉기 온도 및 냉기 유속이 있으며, 축냉재를 싸고 있는 용기는 플라스틱으로 가정하였다. 본 수치해석에서 경계층의 두께는 냉기의 속도 증가와 함께 얇게 되고 축열시간도 짧아지는 것을 확인할 수 있었다. 그리고 냉기의 유속이 빨라질수록 열전달이 촉진되어 축냉용기 전면부에서의 온도가 낮아짐을 알았다. 축냉용기의 후면부에서는 경계층이 두꺼워져 열전달이 전면부에 비해 작아짐을 알았다.

Keywords

References

  1. Azzouz, K., D. Leducq and D. Gobin(2009), Enhancing the performance of household refrigerators with latent heat storage : an experimental investigation, International Journal of Refrigerator, Vol. 32, pp. 1634-1644. https://doi.org/10.1016/j.ijrefrig.2009.03.012
  2. Azzouz, K., D. Leducq and D. Gobin(2008), Performance enhancement of a household refrigerator by addition of latent heat storage, International Journal of Refrigerator, Vol. 31, pp. 892-901. https://doi.org/10.1016/j.ijrefrig.2007.09.007
  3. Dincer, I. and M. A. Rosen(2001), Energetic, environmental and economic aspects of thermal energy storage systems for cooling capacity, Apply Thermal Engineering, Vol. 21, pp. 1105-1117. https://doi.org/10.1016/S1359-4311(00)00102-2
  4. Erek, A. and M. A. Ezan(2007), Experimental and numerical study on charging process of an ice-on-coil thermal energy storage system, International Journal of Energy Resource, Vol. 31, pp. 158-176. https://doi.org/10.1002/er.1240
  5. Hasnain, S. M.(1998), Review on sustainable thermal energy storage technologies. Part : cool thermal storage, Energy Conversion Management, Vol. 39, pp. 1139-1153. https://doi.org/10.1016/S0196-8904(98)00024-7
  6. Jun, Y. H., J. H. Kim, J. H. Moon and S. R. Lee(2015), Development and Field Test of the PCM Cold Storage System to Apply Nighttime Electric Power to Refrigeration Warehouse, The Society of Air Conditioning and Refrigerating Engineers of Korea Seasonal Conference(Summer), pp. 751-754.
  7. Mehling, H. and L. F. Cabeza(2008), Heat and cold storage with PCM, An up to data introduction into basics and applications, Springers-Verlag Berlin Heidelberg. pp. 11-55.
  8. Melone, L., L. Altomare, A. Cigada and L. De Nardo(2012), Phase change material cellulosic composites for the cold storage of perishable products: from material preparation to computational evaluation, Apply Energy, Vol. 89, pp. 339-346. https://doi.org/10.1016/j.apenergy.2011.07.039
  9. Onyejekwe, D.(1989), Cold storage using eutectic mixture of NaCl/H2O : an application to photovoltaic compressor vapours freezers, Solar Wind Technology, Vol. 6, pp. 11-18. https://doi.org/10.1016/0741-983X(89)90033-7