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Abstract: Power quality (PQ) problems are becoming a big issue, since delicate complex electronic 
devices are widely used. We present a new denoising technique using discrete wavelet transform 
(DWT), where a modified correlation thresholding is used in order to reliably detect the PQ 
disturbances. We consider various PQ disturbances on the basis of IEEE-1159 standard over noisy 
environments, including voltage swell, voltage sag, transient, harmonics, interrupt, and their 
combinations. These event signals are decomposed using DWT for the detection of disturbances. 
We then evaluate the PQ disturbance detection ratio of the proposed denoising scheme over 
Gaussian noise channels. Simulation results also show that the proposed scheme has an improved 
signal-to-noise ratio (SNR) over existing scheme. 
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1. Introduction 

Poor power quality (PQ) may cause some major 
problems to the use of the electronic equipment and 
furthermore may damage its efficiency and lifetime. The 
main reason of poor PQ is the disturbance events created 
along power line, such as voltage sag, voltage swell, 
voltage harmonics, voltage impulse, and interruption. 
There are a lot of PQ disturbance sources, such as 
adjustable speed drivers, electronic lamps blasts, power 
supplies, green energy devices like LED, and so on.  

In smart grid (SG), power quality disturbance detection 
is a very big issue since various and incompatible power 
resources are connected together over the power grid. 
Voltage sags are caused by abrupt increase in load or 
source impedance. Voltage swells are induced by abrupt 

reduction in load, by lightening, faulting in circuits, or 
switching of capacitors. Harmonic current may be induced 
due to various non-linear loads. Also the fault clearing and 
utility switching often create various disturbances which 
degrade PQ. Hence, the mitigation of these disturbances 
becomes a big concern, even after the introduction of SG 
utilizing various kinds of power resources. Until now, for 
the PQ disturbance detection, Fourier transform (FT), 
short-term Fourier transform (STFT), neural networks 
(NN), and wavelet transform (WT) have been used. 
However, FT is not a reliable tool for the analysis of PQ 
events because it deals with only spectral information of 
signal such that the starting and ending time of PQ 
disturbances appearing along the time axis is not well 
monitored. Furthermore, FT does not work well for non-
stationary signals like PQ disturbances [1]. STFT, also 
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called windowed FT, is reliable for stationary signals and 
overcomes the limitations of FT by segmenting the signal 
into narrow time intervals but cannot simultaneously 
provide good frequency and time resolutions [2]. NN is 
typically used with the WT, especially for the 
classification of disturbance patterns [3]. WT has two 
favorable characteristics over FT and STFT. First, WT 
allows simultaneous signal localization in time and 
frequency domain. Second, WT is able to separate the fine 
details representing transient signal components from 
coarse details such that the PQ disturbance detection is 
easily performed [4]. For the time frequency analysis of 
non-stationary signals, WT is more suitable because it 
provides time information along with spectral information. 
Discrete WT (DWT) is better for the PQ disturbance 
detection because it provides a flexible window where 
time-frequency variations are easily detectable. For the 
evaluation of the PQ detection, we generate various PQ 
disturbance signals including voltage sag, voltage swell, 
interruption, and the combined effect of sag-harmonics or 
swell-harmonics, on the basis of IEEE-1159 standard [5]. 
In this paper, we introduce a new DWT-based denoising 
technique and evaluate numerically the detection ratio of 
the proposed scheme.  

The paper is organized as follows. In Section 2, we 
present the related work. In Section 3, we introduce the 
wavelet transforms and explain how to decompose a signal 
into different frequencies. Proposed signal denoising 
algorithm and PQ disturbance detection are presented in 
Section 4. Section 5 and Section 6 present numerical 
results of power quality disturbances and the detection 
ratio comparison with other schemes, respectively. Finally, 
Section 7 concludes our work. 

2. Related Work 

The extensive work has been pursued for the detection 
as well as analysis of PQ disturbances. Synchronization 
technique is used for the calculation and identification of 
the transient disturbances of PQ disturbances based on 
phased locked loop, but due to the distorted voltage the 
result may not be accurate [6]. In [7], by using windowing 
and interpolation the leakage and fence effect can be 
greatly reduced but the resolution is degraded greatly as 
well. Parabolic filter (PF) is used to remove background 
noise in 60 Hz (or 50Hz) power line interference, but in 
this technique, the ripples cause the loss in frequency 
content in the ECG signal [8]. The authors in [9] present 
an s-transform based technique, where the denoising 
threshold can be determined with the energy congregation 
level (ECL). In [10, 11], the authors apply a new wavelet 
denoising approach to the electrocardiogram (ECG) signal. 
Compared to the above-mentioned other schemes, the WT 
offers relatively a good frame for the analysis of the PQ 
disturbance signals in which signal energy can be localized 
both in time & scale domain. Hence, the multi-resolution 
analysis that is based on WT is a great tool providing 
spatial frequency decomposition [12]. Some literatures 
[13-19] present wavelet thresholding-based schemes that 
remove the PQ disturbances. Among them, the authors in 

[15], very recently, suggest a DWT-based noise removal 
scheme using correlation that improves the PQ event 
detection ratio. The authors in [20] suggest a multilevel 
thresholding-based wavelet denoising method, which may 
compensate the deficiency of soft- and hard-thresholding. 

3. Wavelet Transform 

WT looks similar to FT but has different merits in it. 
WT is well applicable to non-stationary signals like images, 
sound signals, and PQ signals. WT decomposes the signal 
on the basis of dilated and translated wavelets. After the 
decomposition & synthesis process, the original signal can 
be recovered without losing any information.  

We briefly explain WT and inverse WT (IWT) [13-18] 
as follows. On the WT process, while the time resolution 
increases for the high frequency portion, the frequencies 
localization increases for the low frequency portion. After 
applying the dilations and translations to the mother 
wavelet ψ(t), the daughter wavelet is 
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where a  is the scaling factor and b  is the translating 
factor. The continuous WT (CWT) of the signal ( ) x t  with 

wavelet ( )tψ can be written as 
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where (⋅)∗ indicates the complex conjugate of (⋅). FT of (1) 
is shown below 
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For practical applications, we can convert CWT into 
discrete WT (DWT) with the sampled version nx  of ( ) x t . 
The dyadic WT can be defined as: 
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where k  is an operating index, m  is a scaling number, and 

1, 2,n N= …  (where N  is the number of sampling 
points). In (4), we can see that factors a  and b  of (2) are 
translated into integer parameters m and n with 2ma =  
and  b n= . First, for  1m = , the wavelet filtering operation 
extracts the first scale wavelet coefficients (WCs) that are 
the highest frequency components of signal x. Then, as m 
increases, i.e., 2, 3, …, the filtering operation extracts the 
2nd, 3rd, …, scale WCs, i.e., the 2nd, 3rd, …, highest 
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frequency components of signal x . As mentioned earlier, 
since diverse frequency components often exist in 
disturbing disturbance signals, the investigation of WTCs 
at the different scales would help to determine the 
occurrence of the disturbing events as well as their 
occurring times. 

In this paper, we perform a multi-resolution 
decomposition using dyadic DWT. The ( )0c t  (that is the 

sampled version of input signal ( )x t  as seen in (5)) is 
decomposed into detailed signals by high pass filter (HPF) 
( ) g t and approximate signals by low pass filter 

(LPF) ( ) h t . At first scale 1m = , the detailed signal 
contains high frequency components having sharp edges 
and transitions (like PQ disturbance) and the approximate 
signal includes low frequency components. 

 
 ( ) ( ) ( )1 02

k

c n h k n c k= −∑  (5) 

 ( ) ( ) ( )1 02
k

d n g k n c k= −∑  (6) 

 ( ) ( ) ( )12l l
k
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 ( ) ( ) ( )12l l
k
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Note that after the decomposition process at the lth (= 1, 

2, 3 …) stage, the length of the two decomposed (output) 
signals, lc  and ld , would be half of one of the input signal 

1lc −  [14]. 

4. Proposed Algorithm for Signal 
Denoising and PQ Disturbance 
Detection 

In this section, we present a denoising algorithm 
removing noise from power line signal such that reliable 
PQ disturbance detection would be possible. The proposed 
denoising algorithm is briefly explained in Fig. 2, where 

shows that the PQ disturbances can be accurately detected 
through the denoising process. In this algorithm, we 
decompose an input signal and then remove the noise 
components from the signal for the PQ disturbance 
detection. The original signal can be recovered by applying 
inverse discrete wavelet transform (IDWT) to the output 
signal of the noise removal process.  

As an example, Fig. 3 shows a noisy voltage sag signal 
(i.e., input signal seen in Fig. 3(a)) and its intermediate 
results obtained through the presented noise removal 
process. In that noisy input signal, the voltage sag makes 
the RMS of original signal starting near 0.03 sec and 
ending near 0.06 sec dropped to 15%. The sampling rate is 
set at 15360 points/s (i.e., the average sampling points of 
256 in each cycle) and the signal-to-noise ratio (SNR) is 
assumed to be 35 dB.  

We present a DWT-based noise removal algorithm 
using a modified correlation thresholding whose detail 
procedure is given as follows. 

Step1: Calculate the correlation between the adjacent 
scales as follows:  
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where   =1, 2, 3, ...,n N  is the sampling point, N is the 
number of sampling points, k is the number of scale inter-
multiplication (• denotes the scale inter-multiplication 
operator), and M is the number of all scales. Hereinafter, 
for simplicity, we assume k = 2 and m = 1; however, in 
terms of detection ratio and complexity, the numerical 
results show that k = 2 is better than k ≥ 3 (see Table 7 in 
Section 6). 

Though the DWT process for a noisy voltage sag signal 
(see Fig. 3(a)), we obtain the first scale ( )1,xDWT n  and 

 

Fig. 1. Decomposition of signal by using WT. 

 

Fig. 2. DWT-based denoising algorithm. 
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the second scale ( ) 2,xDWT n , which are seen in Fig. 3(b) 
and (c) respectively. Using the correlation function 

( )2 1,Corr n  = ( )1,xDWT n  ( )2,xDWT n  (see Fig. 3(d)), 
we can enhance the amplitude at the edge points of the 
disturbance signal while suppressing the one of the 
background noise signal. That is, the two edges (starting 
and ending points of the disturbance signal) are much 
sharper and stronger in the correlation ( )2 1,Corr n  than in 

the scales ( ) ,xDWT m n . From Fig. 3(d), we can also 
observe that noise components are almost negligible at a 
localized region compared to disturbance signal 
components such that the noisy background removal from 
x using correlation instead scales is relatively easier [15]. 
It implies that the direct spatial correlation over k different 
scales, ( )k 1,Corr n , may improve the accuracy of locating 
important edges due to PQ events [22]. 

 
Step 2: In this step, we further strengthen the starting 

and ending edges representing the disturbance using a 
modified correlation, denoted as ( ), ,modified kCorr m n . 
After finding the starting and ending positions, we 
multiply these two points of disturbances with S  (which is 
the mean value of  (  ), ).kCorr m n  For the same previous 
example with 2k =  and  1m = , multiplication of these two 
main points with S  gives the modified correlation 
value ( ),2 1,modifiedCorr n , which is shown in Fig. 3(e). In 
Fig. 3(e), we can observe that the two main edges 
(representing the starting and ending points of disturbance) 
in ( ),2 1,modifiedCorr n  are more prominent than the ones 

in ( )2 1,Corr n ; it implies that we could further suppress the 

background noise components using ( ),2 1,modifiedCorr n  

than ( )2 1,Corr n .  
 
Step 3: This step calculates the partially-modified scale 

(PMS) ( ). , ,p modified xDWT m n  as follows: 
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where ∗ denotes the scalar multiplication. The PMS 
enhances the edges of disturbance and reduces the noise 
more as compared to ( ),xDWT m n  or ( ) ,kCorr m n . For 
the same previous example, the PMS can be derived as 
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We can see that the PMS, whose diagram is seen in Fig. 

3(f), clarifies the two edges of the disturbance such that the 
more exact threshoding value can be obtained (see the next 
step). 

 
Step 4: Naturally, in the threshold based algorithm, it is 

very critical to determine the threshold value. Donoho et al. 
[21] present a universal threshold in their well-known 
wavelet shrinkage scheme as follows:  

 
 ( ) 2logSDTHR m N=  (11) 

 
where Donoho et al. [21] estimate the Gaussian noise 
standard deviation: σSD (m) = median (wavelet scales)/.6745.  

In the proposed scheme, we suggest a modified 
correlation thresholding, where the standard deviation 

( )SD m  in (11) is defined as 
 

 ( )
( )( ). , ,

0.6745
p modified x

SD
median DWT m n

m = . 

 
For the previous example, putting the value of 

( ). , 1,p modifiedDWT n  in (11) gives ( )1THR  which helps 

to find new scale ( ), 1,new xDWT n . By the comparison of 

( ). , ,p modified xDWT m n  and threshold value ( ) THR m , we 
can calculate the masking value. The pseudo-code 
expression that defines the masking value is given as: 

 
For 1:m M=  
     For 1:n N= �

           If ( ). , ,p modified xDWT m n  < ( )THR m    

             Then ( ),MASK m n =  

           Else ( ),MASK m n =  
      End 
  End 

Fig. 3. The proposed noise removal algorithm. (a) Vol-
tage sag with noise, (b), (c) WTC’s at scales 1 and 2
respectively, (d) correlation between (b) & (c), (e) 
modified correlation, (f) partially modified first scale,
(g) denoised new first scale.  

 



Ramzan et al.: DWT-based Denoising and Power Quality Disturbance Detection 

 

334

Note that the main edges can be extracted by compar-
ing ( ). , ,p modified xDWT m n  and ( ) ;THR m if the coefficients 

of ( ). , ,p modified xDWT m n  are less than ( )THR m  then the 
masking value will be 0, otherwise it will be 1. Next step 
calculates new DWT scales using the masking value. 

 
Step 5: This step calculates new wavelet scales as 

follows: 
 

 ( ) ( ) ( ), , , , .new x xDWT m n MASK m n DWT m n=   
 
This operation effectively removes noise such that the 

starting and ending points of disturbance become 
prominent. Fig. 3(g) shows the noise-removed first scale 

( ), 1,new xDWT n  with prominent disturbance edges. We 
use the inverse discrete wavelet transform (IDWT) in order 
to reconstruct the original signal where we can check the 
recovered SNR gain representing how much signal quality 
is improved. Numerical results show that the presented 
scheme achieves the recovered SNR gain of up to 6 dB 
over the typical channel environments (see Section 6).  

5. Numerical Results 

In this section, for the detection analysis of PQ 
disturbances, we generate voltage sag, voltage swell, 
interruption, harmonics, and the combined effect of sag & 
interruption or sag & harmonics, on the basis of IEEE-
1159 standard. Using a Matlab simulation, we evaluate the 
PQ disturbances over different channel conditions in terms 
of SNR, numbers of disturbance cycles, and so on. Via the 
simulation, we can confirm that the proposed technique 
improves PQ disturbance detection ratio compared to the 
previous scheme [15]. Using the parameters in Table 1, we 
could generate various disturbance signals for testing. 

5.1 Voltage Sag  
By abrupt load change like motor start, short circuit, 

and loose connection, the root-mean-square (RMS) value 
of power signal could be decreased for a short amount of 
interval that is known as voltage sag or voltage dip. A 
voltage sag event happens when the input signal reduces 

10 to 90 % of the standard RMS value (220V/110V). Table 
2 shows different kinds of voltage sag defined by the IEEE 
standard [5].  

The signal shown in Fig. 4(a) includes a 15 % 
momentaneous sag. Fig. 4(d) displays the correlation 
results between the details scales ( )1,xDWT n  seen in Fig. 

4(b) and ( )2,xDWT n  seen in Fig. 4(c). Fig. 4(e) and (f) 

show the modified correlation ( ),2 1,modifiedCorr n  and 

PMS ( ). , 1,p modifiedDWT n , respectively. After going 
through the proposed procedure, the resulted new scale 

( ), 1,new xDWT n  in Fig. 4(g) shows almost noiselessly 
enhanced disturbance points. Two main edges clearly 
shows the presence of the voltage sag event. 

5.2 Voltage Swell 
According to the IEEE standard, a voltage swell event 

happens when the RMS value of the original signal 
increases from 10 to 90 % at the power frequency with the 
duration of 1/2 cycles to 60 seconds. Table 3 shows 
voltage swell signals defined by the IEEE standard [5]. 

Table 2. Types of sag voltage. 

Types of Sag (As per IEEE standards) 

Types  Time  
Duration  

Typical 
Amplitude 

Momentaneous Sag
Temporary Sag  

Long-term under  

30 Cycles to 3 Sec 
3 sec to 1 min  

>1min 

0.1-0.9 p.u 
0.1-0.9 p.u 
0.8-0.9 p.u 

C1→Pure sinusoidal, C3→Temporary Sag, C2→Momentory 
Sag, C4→long-term sag  

 

Fig. 4. (a) Voltage sag with noise, (b), (c) WTC’s at 
scales 1 and 2 respectively, (d) correlation between 
(b)&(c), (e) modified correlation, (f) partially modified 
first scale, (g) denoised new first scale. 

 

  
Table 1. Signal model and their parameters. 

PQ  
disturbance Model Parameters

Sine-Wave x(t) = A sin(ωt) A = 1 

Sag x(t) = A(1-a(u(t-t1)-u(t-t2))) 
t1< t2 , u(t) = 1, t≥0 

0.1< a ≤0.9 
T≤t2-t1 ≤8T 

Swell x(t) = A(1+a(u(t-t1)-u(t-t2))) 
t1< t2 , u(t) = 1, t ≥ 0 

0.1< a ≤0.8 
T≤ t2-t1 ≤8T 

Harmonics x(t) = A[sin(ωt)+a3 sin(3ωt) 
+a5(5ωt)] 

0.1≤ a3 ≤0.2 
0.05≤ a5 ≤0.5

Interruption  x(t) = a[1-a(u(t-t1)-u(t-t2))] 
sin(ωt) 

0.1≤ β ≤0.2 
0.05≤ γ ≤0.1
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The instantaneous voltage swell signal, shown in Fig. 6(a), 
has 15 % swell that is used for numerical results.  

Fig. 5(b) and (c) indicate the details scales ( )1,xDWT n  

and ( )2,xDWT n , respectively, and Fig. 5(d) and (e) show 

the modified correlation scale ( ),2 1,modifiedCorr n  and the 

PMS ( ). , 1,p modified xDWT n , respectively. Fig. 5(f) shows 

the updated (new) first scale ( ), 1,new xDWT n that has 
prominent disturbance points.  

5.3 Transient Harmonics  
Due to non-linear electric loads, the harmonics voltages 

or currents can be created automatically in electric power 
systems. In Fig. 6(a), a harmonics signal generated in a 
range of 0.03 to 0.05 seconds is shown. Fig. 6(b) and (c) 
display the first and second detail scales ( )1,xDWT n  

and ( ) 2,xDWT n , respectively, and Fig. 6(d) and (e) show 

the modified correlation ( ),2 1,modifiedCorr n  and the PMS 

( ). , 1,p modified xDWT n  Via the proposed procedure, the 

obtained new scale ( ), 1,new xDWT n  has the clear PQ 
detection point as shown in Fig. 6(f).  

5.4 Interruption  
According to the IEEE 1159 standard, in the case of 

interruption, voltage magnitude is always less than 10 % of 
nominal value. Generally, interruption severely affects the 
industrial areas, including the continuous process industry 
and the communication and information processing 
business. An interruption signal, along with noise, is 
shown in Fig. 7(a). Fig. 7(b) and (c) display the detail 
scales ( )1,xDWT n  and ( )2,xDWT n , respectively, and 
Fig. 7(d) and (e) show the modified correlation 

( ),2 1,modifiedCorr n  and PMS ( ). , 1,p modified xDWT n . The 

resulted ( ), 1,new xDWT n  shows the two distinguishable 
main disturbance points. 

Table 3. Types of voltage sag. 

Voltage Swell Magnitude Duration 
Instantaneous 
Momentary  
Temporary 

1.1 to 1.8 pu 
1.1 to 1.4 pu 
1.1 to 1.2 pu 

0.5 to 30 cycles 
30 cycles to 3 sec 

3 sec to 1 min 
 

 

Fig. 5. (a) Voltage swell with noise, (b), (c) WTC’s at 
scales 1 and 2 respectively, (d) modified correlation, (e) 
partially modified first scale, (f) denoised new first 
scale. 

Fig. 6. (a) noisy voltage harmonics signal, (b), (c)
WTC’s at scales 1 and 2 respectively, (d) modified
correlation, (e) partially modified first scale, (f) denoised
new first scale. 

 

Fig. 7. (a) Voltage noisy interruption signal. (b), (c)
WTC’s at scales 1 and 2 respectively, (d) modified
correlation. (e) partially modified first scale, (f) denoised
new first scale. 



Ramzan et al.: DWT-based Denoising and Power Quality Disturbance Detection 

 

336

5.5 Sag-Harmonics and Swell-Harmonics  
In this section, the combined effect of sag harmonics 

and swell harmonics disturbance is analyzed. There is a 
15 % sag signal along with harmonics that are shown in 
Fig. 8(a). Fig. 8(b) and (c) are the detail scales 

( )1,xDWT n  and ( )2,xDWT n , respectively, and Fig. 8(d) 
and (e) are the modified correlation ,2 (1,modifiedCorr n  and 

the PMS ( ). ,   x 1,p modifiedDWT n , respectively. Fig. 8(f) 

shows the new first scale ( ), 1,new xDWT n  that has the 
prominent disturbance points.  

Fig. 9 shows the denoising and detection of a combined 
disturbance signal with swell and harmonics. After going 

through the proposed scheme, the resulting new scale 
( ), 1,new xDWT n  in Fig. 9(f) shows the enhanced distur-

bance points. 

5.6 Voltage Impulse and High Frequency 
Transient 

Following the IEEE standard, we generate a voltage 
impulse at 0.02 sec as shown in Fig. 10(a). Fig. 10(b) and 
(c) plot the detail scales ( )1,xDWT n  and ( )1,xDWT n , 
and Fig. 10(d) and (e) show the modified correlation 

( ),2 1,modifiedCorr n  and PMS ( ). , 1, ,p modified xDWT n  res-
pectively. Fig. 10(f) shows the new scale value 

Fig. 8. (a) Voltage noisy sag-harmonics signal, (b), (c) 
WTC’s at scales 1 and 2 respectively, (d) modified
correlation, (e) partially modified first scale, (f) denoi-
sed new first scale. 

 

Fig. 9. (a) Voltage noisy swell-harmonics signal. (b), (c) 
WTC’s at scales 1 and 2 respectively, (d) modified
correlation, (e) partially modified first scale, (f) denoised
new first scale. 

 

Fig. 10. (a) Voltage noisy impulse case, (b), (c) WTC’s 
at scales 1 and 2 respectively, (d) modified correlation,
(e) partially modified first scale, (f) denoised new first 
scale. 

 

 

Fig. 11. (a) Voltage noisy high frequency case, (b), (c) 
WTC’s at scales 1 and 2 respectively, (d) modified 
correlation, (e) partially modified first scale, (f) denoised
new first scale.  
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( ), 1,new xDWT n  that has the two main disturbance edges 
indicating presence of that PQ disturbance. 

High frequency transient (HFT) is one of the PQ 
disturbances that evaluates the quality of the electrical 
power. In Fig. 11, we apply the proposed scheme to the 
noisy HFT signal to remove the noise. Two main edges 
shown in Fig. 11(f) verifies the presence of the HFT-based 
PQ disturbance. 

6. Detection Ratio of Power Quality 
Disturbances 

Using Matlab, we numerically evaluate the detection 
ratio of PQ disturbance at the different SNR with a range 
of 50 to 35 dB, which vary the level of noise accordingly. 
The detection ratio and the recovered SNR gain (= SNR2 
[= recovered output SNR] – SNR1 [= input SNR]) of the 
proposed scheme are listed in Table 4 and compared to the 
ones (see the bracketed values (⋅) in Table 4) of existing 
scheme in Ref. [15].  

For each PQ disturbance alluded in Section 5, we 
create a total of 100 statistically-independent test sample 
sets (or test signals). For further validation of the 
calculated detection ratio, for each disturbance event, we 
generate the signals with different number of disturbance 
cycles (i.e. 20, 10, and 5). In Table 4, we can observe that 
the proposed scheme improves the detection ratio for all 
the disturbances, especially at low SNR (≤ 35 dB), 
compared to exiting scheme [15]. Table 4 also shows that 
the SNR gain of the presented scheme is about 5 to 6 dB 
for SNR1 = 35dB or 40dB and 2 dB for SNR1 = 50dB, 
respectively.  

Table 5 shows the statistically-evaluated (and selec-
tively chosen) false alarm rate faR  (Type I error rate) and 
miss detection rate mdR  (Type II error rate; which is 
shown in brackets) of the proposed scheme for different 
disturbance events. From Table 5, it is noticeable in terms 
of test reliability that both faR  and mdR  are less than 0.3%. 
Furthermore, the proposed scheme without a convergence 
loop has lower complexity than the existing scheme with a 
convergence loop [15]. 

We can also calculate the detection ratio of the 

proposed scheme by taking different number of 
disturbance cycles (i.e. 20, 10 and 5) which is listed in 
Table 6. We confirm that for 35 dB SNR1, the detection 
ratio decreases as the number of cycles is less than 5. 

Table 7 compares the detection ratio of the proposed 
scheme with the two different scales: Corr2 with k = 2 
(non-bracketed values) and Corr3 with k = 3 (bracketed 
values). It is observable that the detection ratio of Corr3 is 
less than one of Corr2, especially when SNR1 = 35 or 40 
dB. Since Corr2 is relatively simple but has comparable 
performance, it is used throughout the paper. 

7. Conclusion 

In this paper, we have proposed a new denoising 
technique that improves the PQ disturbance detection ratio. 
The proposed approach effectively removes the additive 
noise along the power line such that the reliable PQ 

Table 4. Detection ratio comparison of proposed 
algorithm and previous algorithm [15]. 

SNR(dB) Detection Ratio of Different Disturbances

SNR1 SNR2 Sags Swells Interrup-
tion  

Har-
monics Impulse 

50 51.9 100  
(100) 

100  
(100) 

100  
(100) 

100 
(100) 

100  
(100)

45 49.2 100  
(100) 

100  
(100) 

100  
(100) 

100  
(100) 

100  
(100)

40 45.3 100  
(98) 

100  
(97) 

100  
(96) 

100  
(100) 

100  
(98) 

35 40.1 100  
(96) 

100 
(94) 

100 
(92) 

100  
(100) 

100  
(96) 

 

Table 5. Statistically-evaluated false alarm and miss 
detection rate (%) of proposed scheme. 

 Rfa (%) & Rmd (%) 

SNR1 Sags Swells Interrup-
tion  

Har-
monics Impulse 

50 0.2602 
(0) 

0.2589 
(0) 

0.2602  
(0) 

0.3333 
(0)  

0.2642 
(0)  

45 0.1301 
(0) 

0.1301 
(0) 

0.2602  
(0) 

0.3317 
(0) 

0.2596 
(0)  

40 0.1301 
(0) 

0.1301 
(0)  

0.2069  
(0) 

0.3000 
(0) 

0.1327 
(0)  

35 0.1258 
(0.56)

0.1176 
(0.82)

0.1301  
(0.03) 

0.2283 
(0.67) 

0.1301 
(0) 

 
Table 6. Detection ratio of proposed scheme at
different disturbance cycles.  

Detection ratio of different 
disturbance Cycles SNR1 

Sags Swells Harmonics
20 35 ~ 50 100 100 100 
10 35 ~ 50 100 100 100 
5 40 ~ 50 100 100 100 
5 35 97 94 98 

 
Table 7. Detection ratio comparison of Corr2 and Corr3.

SNR(dB) Detection ratio of Different Disturbances

SNR1 SNR2 Sags Swells Interrup-
tion  

Har-
monics 

50 51.91 100 
(100)

100 
(100) 

100 
(100) 

100 
(100) 

45 49.22 100 
(100)

100 
(100) 

100 
(100) 

100 
(100) 

40 45.39 100 
(98) 

100 
(97) 

100 
(100) 

100 
(100) 

35 40.12 100 
(88) 

100 
(84) 

100 
(90) 

100 
(92) 

 



Ramzan et al.: DWT-based Denoising and Power Quality Disturbance Detection 

 

338

disturbance detection is achievable. Simulation results 
verify that the presented DWT-based algorithm is an 
efficient tool for the detection of PQ disturbance signal 
having inherently non-stationary piecewise-linear behavior. 
Specifically, the recovered SNR gain of the presented 
scheme is 5 to 6dB at the range of 35 to 50 SNR and its 
detecting rate is superior to existing scheme, especially at 
low SNR (35 to 40 dB). For future work, we will analyze 
the robustness of denoising algorithm theoretically as well 
as numerically. 
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