
IEIE Transactions on Smart Processing and Computing, vol. 4, no. 5, October 2015 
http://dx.doi.org/10.5573/IEIESPC.2015.4.5.349 

 

349

IEIE Transactions on Smart Processing and Computing

Image Contrast Enhancement Based on a Multi-Cue 
Histogram  

Sung-Ho Lee, Dongni Zhang, and Sung-Jea Ko 

School of Electrical Engineering, Korea University, Anam-dong 5(o)-ga, Seongbuk-gu, Seoul, 136-713, Rep. of Korea 
{sungholee, dnzhang}@dali.korea.ac.kr, sjko@korea.ac.kr  

Received July 15, 2015; Revised August 6, 2015; Accepted August 9, 2015; Published October 31, 2015 

* Regular Paper 

 

Abstract: The conventional intensity histogram does not indicate edge information, which is 
important in the perception of image contrast. In this paper, we propose a multi-cue histogram 
(MCH) to represent a collaborative distribution of both the intensity and the edges of an image. 
Based on the MCH, if the intensity values have high frequency and a large gradient magnitude, 
they are spread into a larger dynamic range. Otherwise, the intensity values are not strongly 
stretched. As a result, image details, such as edges and textures, can be enhanced while artifacts and 
noise can be prevented, as demonstrated in the experimental results.  
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1. Introduction 

Since the human visual system (HVS) perceives con-
trast in an image very well, rather than the absolute 
intensity value, changes at or near edges have a profound 
impact on human perception [1]. Therefore, many conven-
tional contrast enhancement methods [2-4] based on the 
intensity histogram tend to not only weaken the edge 
strength, especially in the bright regions, but to also 
produce artifacts in the homogenous regions. 

In recent years, approaches that consider the edges or 
context as well as the intensity values have been 
presented [5-8]. The contrast enhancement method [5] 
enforces a strict order of pixels in the image based on 
intensity values as well as the averages in the local 
neighborhood. Then, new intensity values are assigned 
uniformly to the pixels, according to a strict order. Wan 
et al. [6] employed a similar approach [5] except that the 
pixels are ordered using wavelet coefficients instead of 
local average inten-sity values. Hashemi et al. [7] 
adopted a genetic algorithm to obtain a target histogram 
by maximizing a contrast measure based on the image 
edges. Then, a histogram specification is performed using 
this target histogram. Celik and Tjahjadi [8] constructed a 
2D histogram for the input image using the mutual 
relationship between each pixel and its neighboring 

pixels. Then, a 2D target histo-gram is obtained by 
minimizing the difference between the input histogram 
and the uniform histogram. Image contrast is enhanced 
through mapping the diagonal elements of the input 
histogram to those of the target histogram. 

In this paper, we propose a contrast enhancement 
method based on a novel multi-cue histogram (MCH). As 
the conventional histogram counts the number of pixels 
with each intensity value in the image, the MCH replaces 
the intensity value with a feature vector consisting of both 
the intensity value and edge magnitude. By counting the 
number of pixels corresponding to each feature vector, the 
MCH can represent a collaborative distribution of the 
intensity and edge information of the image. Thus, the 
MCH enables the transformation function to adapt to not 
only the pixel frequency but also the image edges. The 
proposed method can improve the contrast of the image 
details, as well as avoid magnifying noise and artifacts in 
the smooth regions.  

The rest of the paper is organized as follows. In Section 
2, the proposed MCH is defined and the derivation of the 
transformation function is presented. The experimental 
results and parameters are given in Section 3. Section 4 
concludes the paper. 
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2. Proposed Method 

2.1 Multi-cue Histogram 
The conventional intensity histogram represents the 

frequency of each intensity value of the image. Figs. 1 (a)-
(b) present two different images, which have the same 
intensity histogram as shown in Fig. 1(c). Applying 
histogram equalization (HE) to these two images produces 
different enhanced results, as shown in Figs. (d) and (e). 
Note that the noise is magnified in Fig. 1(d), whereas the 
patterns are more visible in Fig. 1(e).  

To solve this problem, we introduce the MCH, which 
considers edge magnitude as well as the intensity value. 
Let V = (r, g) denote the feature vector, where r and g are 
the intensity and edge magnitude, respectively. The 
gradient magnitude can be calculated using any edge 
detector, such as the Sobel operator. Each bin of the MCH 
is indicated by a feature vector, Vi = (ri, gi), i = 1,�, K, 
where K is the number of bins in the MCH. The 
representative feature vectors, Vi’s, are defined in advance 
and fixed for any input image. Since the gradient 
magnitude has a great variety of values in natural images, a 
large number of feature vectors can be generated. 
Therefore, we select the K representative feature vectors 
through quantizing the feature vectors. Specifically, the 
feature vectors from an image dataset are collected into a 
2D feature space, and a clustering algorithm is applied to 
categorize these feature vectors into K groups. The group 
centers are used as the representative feature vectors. The 
bins are sorted in the order of their intensity values. The 
gradient magnitudes are normalized into [0, 1] by dividing 
the highest value in the dataset. The implementation details 
are given in Section 3.1.  

To construct the MCH for an input image using the 
pre-defined Vi’s, the feature vector V(x, y) for each pixel at 
position (x, y) is calculated and assigned to one of the Vi’s 
based on the Euclidean distance. The i-th bin of the MCH 
represents the frequency of the assignments to the i-th 
representative feature vector Vi. The MCHs of the images 
in Figs. 1(a)-(b) are shown in Fig. 2, where the represen-
tative feature vectors of the three highest bins are dis-
played. From the images with the same intensity histogram 
in Figs. 1(a)-(b), the resultant MCHs look totally different, 
as seen in Fig. 2. 

It is worthwhile to state that, although the intensity and 
edge magnitude are used in the proposed method, the 
MCH can be extended by utilizing different kinds of low-
level features, such as chrominance values, the local binary 
pattern (LBP), and Gabor filter responses.  

2.2 Transformation Function 
In most HE-based contrast enhancement methods, the 

transformation function is steep at the intensity values, 
with high frequencies in order to redistribute these values 
into a wider range. As a result, when these frequent 
intensity values are with high gradient magnitudes, the 
strong stretching can enhance the contrast of the edges. 
However, a strong stretching in the homogenous region 
consisting of pixels with low gradient magnitudes results 

in artifacts. To solve this problem, we introduce a contrast 
enhancement method based on the MCH. The MCH, 
which represents the frequency as well as the gradient 
magnitude, enables the transformation function to adapt to 
both the frequency and gradient. We design the transfor-
mation function to be steep at high gradient values (to 
enhance the image edges) and to be gentle at the low 
gradient values (to avoid artifacts). Thus, the slope of the 
transformation function should be proportional to the pixel 
frequency as well as the gradient magnitude, as follows: 

 
 ( )i i ia C f g β= ⋅ ⋅   (1) 

 
where ai, fi and gi represent the slope, the frequency and 
the representative gradient magnitude of the i-th bin, 
respectively, and C is a constant. Let ∆ri denote the 
intensity range of the i-th bin, where the boundary between 
two bins is a medium value of the two representative 
intensity values. Then the output intensity increment ∆si 
for the i-th bin can be calculated as ∆si = ∆ri ·ai. 
Normalizing the intensity values into [0, 1] using 

 
 1i i i

i i

s r aΔ = Δ ⋅ =∑ ∑   (2) 

Fig. 1. (a) An image with low noise, (b) an image with a 
vertical pattern, (c) an intensity histogram of the two 
images, (d) the HE result of (a), and (e) the HE result of 
(b). 

                             (a)                                               (b) 

Fig. 2. (a) MCH of Fig. 1(a), and (b) MCH of Fig. 1 (b).
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the constant C can be calculated by 
 

 1 ( )i i i
i

C r f g β= Δ ⋅ ⋅∑  (3) 

 
The power β, which is experimentally selected from the 

range [0, 1], adjusts the degree of image dependency in the 
contrast enhancement.  

Fig. 3 illustrates the results for different β’s. In Fig. 
3(a), the representative feature vectors of the three highest 
bins are displayed. The bin with the highest frequency is 
obtained at an intensity value of about 138 and a 
normalized gradient magnitude of 0.9. For β = 1, the 
transformation function in Fig. 3(b) is very steep around 
intensity 138 because of the high frequency and gradient 
value of the corresponding bin. As a result, the contrast of 
the bright regions in the image is over-enhanced, while the 
details in the dark region are ignored. For β = 0, the slope a 
is always 1; thus, the transformation function does not 
change the intensity value after mapping. For 0 < β < 1, the 
transformation function can be seen as a trade-off between 
the preservation of the original appearance (β = 0) and 
adaptation to the MCH (β = 1). As shown in Figs. 3(c) and 
(d), the transformation function with a higher β adapts 
more to the image characteristics. 

Besides the pixel frequency and gradient magnitude, 
we also consider the property of the HVS. According to 
Weber’s law [9], the HVS is more sensitive to contrast at 
low intensities than to that at high intensities. Therefore, 
we use a weighting factor to stretch the distribution of low 
intensity values and compress the distribution of high 
intensity values [10]: 
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(log(1 ) log( ))
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i
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 (4) 

 
where α∈(0,1]. A higher α provides stronger stretching to 
the distribution of low intensity values. (1) and (3) are 
modified as 

 
 ( )i i i ia C w f g β= ⋅ ⋅ ⋅   (5) 
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i
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Then, the output intensity si for ri can be calculated as 
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Finally, a spline function that satisfies all K pairs of (ri, 

si) is calculated and used as a transformation function. The 
contrast-enhanced image is obtained by mapping inten-
sities of the input image according to the transformation 
function. 

3. Experimental Results and Evaluations 

Color images are converted into the YCbCr color space 
and only the luminance component Y is processed. The 
edge magnitude is calculated using the Sobel operator and 
normalized by the largest value in the image dataset [12]. 
α = 0.8 in (4) and β = 1/3 in (5) are used for our simulation.  

3.1 Selection of the Representative 
Feature Vectors  

To select appropriate representative feature vectors for 
MCH bins, we first collect the feature vectors from the 
image dataset [11] into a two-dimensional space. Then 
starting from uniform initial seeds, the k-means clustering 
algorithm is applied to these feature vectors to obtain K 
representative groups. Let Ui denote the i-th group and Vi = 
(ri, gi) denote the center of Ui. Vi is used as the 
representative feature vector for the i-th bin of the MCH. 
We calculate the Euclidean distance between the feature 
vectors and their corresponding group centers as 

 

 
1

|| ||
i

i

K
i

k i
i

d
= ∈

= −∑ ∑
V U

V V   (8) 

 
where Vi represents the feature vector in the group Ui. A 
smaller distance indicates that the feature vectors can be 
represented more accurately by the corresponding group 
centers. As expected, our experiments show that dk 
decreases as K increases. But the decreasing rate ∆dk/∆K 
tends to be insignificant for a large K. Considering both dk 
and its decreasing rate, we select K = 100 as the group 
number for our simulation.  

3.2 Result Assessment 
The proposed method is compared with the weighted 

thresholded histogram (WTH) [2], the histogram modifica-
tion framework (HMF) [3], the Gaussian Mixture Model 
(GMM)–based method [4], the exact histogram specifica-
tion (EHS) [5], and the joint exact histogram specification 

           (a)                      (b)                     (c)                      (d) 

Fig. 3. (a) Test image flower and its MCH. Resultant
images and the corresponding transformation func-
tions using (b) β=1, (c) β=1/3, and (d) β=1/10. 

 



Lee et al.: Image Contrast Enhancement Based on a Multi-Cue Histogram 

 

352

(JEHS) [6]. For objective assessment, we measure the 
average mean brightness error (AMBE), the discrete 
entropy (DE), and the measure of enhancement by entropy 
(EME).  

Fig. 4 presents the test image door and its results, with 
the objective assessments in Table 1. The WTH does not 
brighten the overall luminance while improving the image 
contrast. The HMF and the EHS tend to over-enhance the 
images and produce an unnatural appearance. Among the 
GMM-based method, the JEHS, and the proposed method, 
the proposed method best preserves the details of the knob. 
The proposed method produces a medium AMBE by 
properly brightening the dark original image. Although the 
proposed method exhibits low DE and EME, the methods 
with high DE and EME values produce obvious over-
enhanced results. 

In Fig. 5, the test image mountain presents a washed 
out appearance. All the aforementioned methods produce 
similar overall brightness, except WTH, which produces 
the highest AMBE and tends to darken the image. Since 
DE and EME measure the contrast, WTH, HMF, and EHS 
(which produce high DE and EME) tend to increase the 
noise in the sky region. The hilltop in the results of GMM 
and JEHS are too bright to be distinguished from the sky. 
The proposed method enhances the overall contrast 
without magnifying noise in the sky region.  

             (a)                             (b)                          (c)                          ( d)                          (e)                          (f)                            (g) 

Fig. 4. (a) Test image door and its MCH. Contrast enhancement results and the corresponding transformation
functions using, (b) WTH, (c) HMF, (d) GMM, (e) EHS, (f) JEHS, and (g) the proposed method. 

 

 
                (a)                         (b)                         (c)                        (d)                        (e)                        (f)                       (g) 

Fig. 5. (a) Test image mountain and its MCH. Contrast enhancement results and the corresponding transformation
functions using, (b) WTH, (c) HMF, (d) GMM, (e) EHS, (f) JEHS, and (g) the proposed method. 

 

Table 1. AMBE, DE and EME of Test Image Door.

 WTH HMF GMM-
based EHS JEHS Propos

ed 
AMBE 0.78 44.55 44.54 74.01 16.51 21.81

DE 4.33 5.19 4.23 5.35 3.95 3.92
EME 13.47 22.45 7.05 23.07 6.87 6.57

 
Table 2. AMBE, DE and EME of Test Image Mountain.

 WTH HMF GMM-
based EHS JEHS Propos

ed 
AMBE 53.44 29.74 18.71 41.68 27.84 36.57

DE 5.20 5.24 4.74 5.15 4.84 5.12
EME 11.16 10.47 6.11 16.84 7.12 9.26
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4. Conclusion 

This paper presents an image contrast enhancement 
method based on the MCH. Using the MCH representing 
the collaborative distribution of the edge information as 
well as the intensity value, the transformation function for 
contrast enhancement is derived. We found that the 
transformation function can enhance the image edges and 
avoid artifacts by redistributing the pixel intensity values 
in proportion to not only the pixel frequencies but also the 
gradient magnitudes. Experimental results indicate that the 
proposed method improves image contrast while preser-
ving image details, as well as the smoothness of the 
homogeneous regions. The proposed MCH can easily be 
extended by adopting various image features. Furthermore, 
it can be applied to other image processing areas, such as 
image retrieval and image segmentation. 

 
References 

 
[1] W. Lin, L. Dong and P. Xue, “Visual distortion gauge 

based on discrimination of noticeable contrast 
changes,” IEEE Trans. Circuits Syst. Video Technol., 
vol. 15, no. 7, pp. 900-909, Jul. 2005. Article 
(CorssRefLink) 

[2] Q. Wang and R. K. Ward, “Fast image/video con-
trast enhancement based on weighted thresholded 
histogram equalization,” IEEE Trans. Consum. 
Electron., vol. 53, no. 2, pp.757-764, May 2007. 
Article (CorssRefLink) 

[3] T. Arici, S. Dikbas and T. Altunbasak, “A histogram 
modification framework and its application for image 
contrast enhancement,” IEEE Trans. Image Process., 
vol.18, no. 9, pp. 1921-1935, Sep. 2009. Article 
(CorssRefLink) 

[4] T. Celik and T. Tjahjadi, “Automatic image equali-
zation and contrast enhancement using Gaussian 
mixture modeling,” IEEE Trans. Image Process., 
vol.21, no. 1, pp. 145-156, Jan. 2012. Article 
(CorssRefLink) 

[5] D. Coltuc, P. Bolon, and J. Chassery, “Exact 
histogram specification,” IEEE Trans. Image 
Process., vol.15, no. 5, pp. 1143-1152, May 2006. 
Article (CorssRefLink) 

[6] Y. Wan and D. Shi, “Joint exact histogram specifica-
tion and image enhancement through the wavelet 
transform,” IEEE Trans. Image Process., vol.16, no. 
9, pp. 2245-2250, Sep. 2007. Article (CorssRefLink) 

[7] S. Hashemi, S. Kiani, N. Noroozi, and M. E. 
Moghaddam, “An image contrast enhancement 
method based on genetic algorithm,” Pattern 
Recognit. Lett., vol. 31, no. 13, pp. 1816-1824, Oct. 
2010. Article (CorssRefLink) 

[8] T. Celik and T. Tjahjadi, “Contextual and variational 
contrast enhancement,” IEEE Trans. Image Process., 
vol. 20, no. 12, pp. 3431-3441, Dec. 2011. Article 
(CorssRefLink) 

[9] R. C. Gonzalez and R. E. Woods, Digital image 
processing, Upper Saddle River, New Jersey: 

Prentice-Hall, 2002.  
[10] V. Chesnokov, “Image enhancement methods and 

apparatus therefor,” WO 02/089060, 2002. Article 
(CorssRefLink) 

[11] V. Bychkovsky, S. Paris, E. Chan, and F. Durand, 
“Learning photographic global tonal adjustment with 
a database of input/output image pairs,” in Proc. 
IEEE Conf. Comput. Vision Pattern Recognit., pp. 
97-104, 2011. Article (CorssRefLink) 

 
 

Sung-Ho Lee received a B.Sc in 
Electrical Engineering from Korea 
University in 2010. He is currently 
pursuing a Ph.D. in Electrical 
Engineering from Korea University, 
Seoul, Korea. His research interests 
are in the areas of computer vision and 
image processing. 

 
Dongni Zhang received her Ph.D. in 
2013 in mechatronics from Korea 
University, and her BSc in 2007 in 
Telecommunication Engineering from 
Beijing University of Posts and 
Telecommunication. She is currently 
working in the Beijing Samsung  
Telecom R&D Center. 

 
Sung-Jea Ko (M’88-SM’97-F’12) 
received his Ph.D. in 1988 and his 
MSc in 1986, both in Electrical and 
Computer Engineering, from State 
University of New York at Buffalo, 
and his BSc in Electronic Engineering 
from Korea University in 1980. In 
1992, he joined the Department of 

Electronic Engineering at Korea University, where he is 
currently a Professor. From 1988 to 1992, he was an 
Assistant Professor in the Department of Electrical and 
Computer Engineering at the University of Michigan- 
Dearborn. He has published over 180 international journal 
articles. He also holds over 60 registered patents in fields 
such as video signal processing, computer vision, and 
multimedia communications. He is the 1999 Recipient of 
the LG Research Award given to the Outstanding 
Information Technology and Communication Researcher. 
He received the Hae-Dong best paper award from the 
Institute of Electronics and Information Engineers (IEIE) 
(1997), the best paper award from the IEEE Asia Pacific 
Conference on Circuits and Systems (1996), a research 
excellence award from Korea University (2004), and a 
technical achievement award from the IEEE Consumer 
Electronics (CE) Society (2012). He received a 15-year 
service award from the TPC of ICCE in 2014. He has 
served as the General Chairman of ITC-CSCC in 2012 and 
as General Chairman of IEICE in 2013. He is a member of 
the editorial board of the IEEE Transactions on Consumer 
Electronics. He is a Past President of the IEIE and the 
Vice-President of the IEEE CE Society. 

Copyrights © 2015 The Institute of Electronics and Information Engineers


