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* Short Paper 

 

Abstract: This paper proposes a method for improving a branch predictor for the extendable 
instruction set computer (EISC) processor. The original EISC branch predictor has several 
shortcomings: a small branch target buffer, absence of a global history, a one-bit local branch 
history, and unsupported prediction of branches following LERI, which is a special instruction to 
extend an immediate value. We adopt a G-share branch predictor and eliminate the existing 
shortcomings. We verified the new branch predictor on a field-programmable gate array with the 
Dhrystone benchmark. The newly proposed EISC branch predictor also accomplishes higher 
branch prediction accuracy than a conventional branch predictor.  
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1. Introduction 

An addition of pipeline stages is one easy method to 
increase an operational clock frequency; thus, modern 
microprocessors have been developed to have deeper 
pipeline stages. However, as the pipeline becomes deeper, 
the branch miss penalty gets worse. For this reason, 
modern microprocessors include very advanced branch 
predictors [1]. 

EISC is the abbreviation for extendable instruction set 
computer. This processor extends the immediate value of 
instructions by using a special instruction called LERI [2], 
and therefore, the processor can compact code size because 
the immediate value is not large, in most cases (i.e., even 
LERI is not needed). The EISC processor has a simple 
branch predictor that delivers poor performance due to a 
small branch target buffer (BTB), absence of branch 
correlation, and a limit of a one-bit local branch history. 
There are several solutions for these problems, such as 
expanding the size of the BTB, adding a saturation counter, 
implementing a pattern history table (PHT), and using a 
global history register (GHR). A G-share branch predictor 
has all of these components, and thus, it shows high branch 
prediction accuracy with a relatively small area [3]. 

In this paper, we implement a G-share branch predictor 
in the EISC processor to leverage its high prediction 
accuracy. However, the performance of the G-share branch 

predictor implemented in the EISC processor was worse 
than expected due to the following two problems. 

Prediction accuracy between G-share branch predictors 
decreases when the distance of a pair of branches is so 
close that the following branch makes a prediction even 
before the previous branch history is updated in the GHR. 

A distant branch target address that exceeds an 
immediate bit field of the EISC branch instruction can be 
expressed in combination with LERI instructions. The 
current EISC branch predictor does not support a branch 
instruction that is preceded by LERI instructions. 

By solving these problems, we make main contribu-
tions in this paper as follows. 

We propose a method to improve the G-share predictor 
by updating the GHR speculatively with a previous 
prediction history. 

We propose logic that can predict branch instructions 
following LERI instructions. 

We verified our new branch predictor on a Xilinx 
VIRTEX5 field-programmable gate array (FPGA) [4] with 
the EISC processor and achieved a 136% improvement in 
branch prediction accuracy compared to a conventional bi-
modal branch predictor. 

The rest of the paper is organized as follows. Section 2 
covers the background of EISC and its shortcomings. 
Section 3 describes the implementation of the proposed 
new EISC branch predictor, and its performance is 
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evaluated in Section 4. Finally, Section 5 concludes the 
paper. 

2. Background and Motivation 

EISC instruction set architecture (ISA) has a special 
instruction, called LERI to extend immediate values of 
instructions. The EISC instructions are able to handle at 
maximum 32-bit immediate values by using LERI up to 
three times. As shown in Fig. 1, it can also be used to 
specify a target address of a branch instruction so that a 
program can jump anywhere in memory. Without LERI, 
indirect branches should be used, which degrades 
performance. 

2.1 Analysis of an Original EISC Branch 
Predictor  

This section describes how an original EISC branch 
predictor works and why its accuracy is low. A BTB 
consists of a four-entry, fully associative cache for 
predicting a branch target address, as shown in Fig. 2. Also, 
no additional storage exists to store a history of branches 
for predicting the direction of a branch. Instead, the branch 
predictor stores only branches taken. Any branches in the 
BTB are always predicted as taken. Because of this simple 
mechanism, the branch predictor can be implemented with 
a small area, and its latency becomes very short. 

However, there are four performance issues in this 
simple branch predictor. First, the original EISC branch 
predictor can store only four branches. Second, this branch 
predictor does not consider a global history of branches, 
e.g., branch instructions in nested loops. Third, as the local 
branch history has one-bit storage, all branches are 
predicted as taken if there is a matched entry in the BTB. 
In this case, if a direction of a branch alternates between 

taken and not-taken states, the branch is continuously 
mispredicted. Fourth, branch instructions following LERI 
instructions are not supported by the BTB. Thus, those 
unpredicted branches frequently cause pipeline stalls, 
because there are so many branches accompanying LERI 
instructions that jump a long distance, such as function call 
routines. In this paper, we improve branch prediction 
performance by redesigning the EISC branch predictor to 
solve these four shortcomings. 

2.2 G-share Branch Predictor 
G-share is a two-level branch predictor based on the bi-

modal branch predictor [5]. With the program code shown 
in Fig. 3, the original EISC branch predictor and the bi-
modal predictor miss the branch instruction in the last 
iteration of an inner loop. However, G-share can predict 
most branches correctly, because it uses a global history 
register (GHR). The GHR is a shift register that stores 
resolved directions of recent branches. Different phases of 
a branch instruction can be distinguished by accessing a 
pattern history table (PHT), XORing program counter (PC) 
and GHR. Thus, the local history of a branch is stored as 
multiple PHT entries according to the history of previous 
branches. 

As noted, four shortcomings of the original EISC 
branch predictor are 1) a small BTB, 2) absence of a global 
history, 3) a one-bit local branch history, and 4) lack of 
prediction of branches following LERI instructions. The 
low accuracy of the branch prediction due to these 
shortcomings results in larger stalls in pipelines at deeper 
pipelines. 

A BTB can be expanded to more than four entries in G-
share, and its PHT stores two-bit local branch history 
information with a two-bit saturation counter. As a result, 
issues 1), 2), and 3) are solved by adopting the G-share 
branch predictor. 

2.3 Improved G-share Branch Predictor 
Branch instructions are fetched consecutively with the 

program code shown in Fig.. 4. In this case, branch B is 
fetched into a pipeline before branch A arrives at the 
execute stage. Consequently, when branch B is predicted 
by reading its PHT entry, the GHR does not include the 
history of branch A. On the other hand, when branch B 
arrives at the execute stage and updates its PHT entry, the 
GHR now includes the history of branch A. With these 
different GHR states, single branch instruction B accesses 
the different PHT entries when reading and updating the 
PHT, which degrades accuracy of the branch predictor. In 
addition, as the number of stages for fetch and decode 
increases, this situation can occur more frequently, because 
it takes more cycles to resolve a branch instruction after it 

Fig. 1. Behavior of LERI Instruction. 

 

 

Fig. 2. Original EISC Branch Predictor. 

 

 

Fig. 1. Nested Loop Code for Testing G-share Branch 
Predictor. 
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is fetched. We solve this problem by updating the GHR 
speculatively in the fetch stage. Lastly, the issue of 
predicting branches that follow LERI instructions can be 
solved by implementing a logic that can recalculate an 
actual branch instruction address. 

3. Implementation 

In this section, implementation of our new G-share 
branch predictor is described. 

3.1 Pattern History Table 
Fig. 5 describes an overall structure of our pattern 

history table (PHT). Each PHT entry is a two-bit saturation 
counter, which increases with “taken” and decreases with 
“not-taken.” It is used to predict the direction of a branch. 
With 002or 012, the branch is predicted as not-taken, 
whereas for 102 or 112, it is predicted as taken. We can 
make the bi-modal branch predictor by using a PHT and a 
BTB [5]. 

3.2 Global History Register and G-share 
Branch Predictor 

We implemented a global history register where size 
depends on the PHT entry size: 

 
 log₂(PHT size) = # bit of GHR  (1) 

 
Taken/not-taken information of resolved bran-ches is 

inserted into the least significant bit (LSB) of the GHR, as 

shown in Fig. 6. When a branch is fetched into a pipeline, 
a part of PC and GHR is XORed to read its corresponding 
entry in the PHT. After that, the branch instruction is 
resolved, whether it is taken or not at the execute stage. 
PHT and GHR are updated at this time for the next branch 
prediction.. 

3.3 Improved G-share Branch Predictor 
Fig. 7 shows an original G-share branch predictor 

architecture. Due to deep pipelines, the GHR may not 
include the history of preceding branches when a branch 
needs to be predicted at the fetch stage. To solve this 
problem, we implement another GHR at the fetch stage. It 
speculatively stores a predicted branch direction at the 
fetch stage, unlike the original GHR, which stores resolved 
branch directions at the execute stage. However, a GHR at 
the fetch stage can be updated with the wrong direction 
due to misprediction of a preceding branch. To recover this, 
the GHR at the fetch stage is overwritten with the original 
GHR whenever a branch is mispredicted. As a result, the 

 

Fig. 4. Continuous Branch Instructions. 

 

Fig. 5. Saturation Counter and Pattern History Table.

 

 

Fig. 6. Global History Register. 

 

Fig. 7. G-share Branch Predictor. 

 

Fig. 2. Advanced Global History Register. 
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new GHR is used to read the PHT, and the original GHR is 
used to write the PHT, as shown in Fig. 8. 

3.4 Prediction Logic for Branch 
Instruction Following LERI 

The original EISC branch predictor does not predict 
branches that are fetched right after LERI, and therefore, 
such branches are always predicted as not-taken. The 
reason is that LERI folding logic at the fetch stage 
combines a LERI instruction and the following non-LERI 
instruction into a single instruction, then passes it to the 
decode stage. Therefore, LERI is not actually executed at 
the execute stage but is folded with its following 
instruction, which improves instruction per cycle (IPC). 
An instruction goes through a pipeline with its PC and, for 
a folded instruction, its PC is determined with the PC of 
the first LERI instruction because of PC relative addressing 
and exception. In the original architecture, the PC of a 
branch following a LERI instruction cannot be known after 
it is folded. For this reason, a branch with a LERI 
instruction cannot be inserted into the BTB. To calculate 
its PC, we implement the LERI folding logic at the fetch 
stage to count the number of folded LERI instructions. The 
fetch stage passes the value of the LERI counter as well as 
an instruction, a folded PC and an extended immediate 
value to the decode stage. At the decode stage, the actual 
PC of a branch is calculated by adding the folded PC, i.e., 
the PC of the first LERI instruction with the value of the 
LERI counter. This logic enables prediction of branches 
following the LERI instructions. 

4. Evaluation 

In Section 4, we evaluate the performance of our new 
branch predictor with the results of various test codes and 
the Dhrystone benchmark program.  

4.1 Performance with Conventional        
G-share Branch Predictor 

Fig. 9 shows example code of correlated branches. In 
the figure, the branch of the inner loop can be predicted, 
exploiting the global history. We executed this code with 
various branch predictors. BTB-based and bi-modal branch 
predictors show the same miss rate, 20.76%, because 
neither of them considers the global history. On the other 
hand, the G-share branch predictor, which considers the 
global history, shows a 1.2% miss rate. 

4.2 Performance with Improved G-share 
Branch Predictor 

The conventional G-share branch predictor does not 
work normally with program code shown in Fig. 10. When 
a branch instruction is predicted at the fetch stage, the 
GHR may not have been updated with the history of all 
previous branches, which negatively impacts prediction 
accuracy. Therefore, we improved G-share by adding 
another GHR, as shown in Section 3.3. Performance of our 

enhanced G-share is shown in Table 2. The miss rate was 
reduced from 20.6% to 1.4%. 

4.3 Performance with Prediction for 
Branches Preceded by LERI 

To evaluate the prediction logic for branches preceded 
by LERI instructions, Dhrystone [6] was used as a 
benchmark program. We tested branch predictors with 
various configurations, and the results are shown in Fig. 11. 
After the branch predictor is able to predict the branch 
following LERI, the bi-modal miss rate was reduced from 
33% to 16%. With a five-bit G-share, the miss rate was 
lowered from 30% to 15%. In particular, the miss rate of a 
seven-bit G-share was decreased to approximately 1/4. In 
addition, because the branch predictor has a larger PHT 
and GHR, the effect of prediction logic for a branch 
following a LERI instruction becomes greater. Our six-bit 
G-share branch predictor has storage of an eight-byte PHT 
(2 bits * 64), 12-bit GHRs (6 bits * 2), a 1.8KB BTB and 
additional logic for addressing and synchronizing two 

Table 1. Performance of G-share Branch Predictor.

Branch 
Predictor

# of branch 
instructions

# of miss 
prediction Miss rate 

BTB based 104 20.76% 
Bi-modal 104 20.76% 
G-share 

501 
6 1.20%

 
Table 2. Performance of Advanced G-share Branch 
Predictor. 

G-Share # of branch 
instructions 

# of miss 
prediction Miss rate

Original 103 20.60% 
Enhanced 

500 
7 1.4% 

 

 

Fig. 10. Test Code for the Advanced G-share Branch 
Predictor. 

 

Fig. 11. Performance of the G-share branch predictor 
supporting branches following LERI instructions. 
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GHRs. Therefore, with a small area overhead, it shows 
great improvement with respect to prediction accuracy. 

5. Conclusion 

In this paper, we proposed the design of a new G-share 
branch predictor for the EISC processor. We identified the 
shortcomings of the original EISC branch predictor and 
enhanced it by adopting a G-share branch predictor. Also, 
we addressed the performance issues of the adopted EISC 
G-share branch predictor and presented feasible design 
solutions. The proposed branch predictor was synthesized 
and tested on an FPGA (Xilinx VIRTEX5) with the 
Dhrystone benchmark. The proposed EISC branch 
predictor that has a six-bit GHR and a 64-entry PHT shows 
prediction accuracy of 91.02% (with an 8.98% miss rate). 
Moreover, it improved prediction accuracy by 136% 
compared to a bi-modal branch predictor that has a 64-
entry PHT without prediction logic for a branch following 
LERI. 

Acknowledgement 

This work (Grants No. C0217499) was partially 
supported by Business for Cooperative R&D between 
Industry, Academy, and Research Institute funded Korea 
Small and Medium Business Administration in 2014. This 
work was also supported by the IT R&D program of 
MOTIE/KEIT. [10052716, Design technology develop-
ment of ultra-low voltage operating circuit and IP for smart 
sensor SoC] . 

 
References  

 
[1] Sprangle, E. and Carmean, D., "Increasing processor 

performance by implementing deeper pipelines," Proc. 
29th Annual Int. Symp. on Computer Architecture, 
2002. 

[2] Article (CrossRef Link)  
[3] Advanced Digital Chips Inc., "Extenable Instruction 

Set Computer," Article (CrossRef Link)  
[4] Shien-Tai Pan, Kimming So, and Joseph T. Rahmeh, 

"Improving the accuracy of dynamic branch pre-
diction using branch correlation," In Proc. of the fifth 
int. conf. on Architectural support for programming 
languages and operating systems, 1992. 

[5] Article (CrossRef Link)  
[6] Xilinx, "Virtex-5 Family Overview," Article 

(CrossRef Link)  
[7] Tse-Yu Yeh and Yale N. Patt, "Two-level adaptive 

training branch prediction," In Proc. of the 24th 
annual int. symp. on Microarchitecture, 1991. 

[8] Article (CrossRef Link)  
[9] Reinhold P. Weicker, "Dhrystone: a synthetic 

systems programming benchmark," Magazine Com-
munications of the ACM, vol. 27, issue 10, pp. 1013-

1030, October 1984. 
[10] Article (CrossRef Link)  
 
 
 

InSik Kim received his B.Eng. from 
the Department of Electronics and 
Radio Engineering at Kyung Hee 
University, Yong-in, Korea, in 2014. 
Since 2014, he has been in the ma-
ster’s course in the Department of Au-
tomotive Convergence at Korea Uni-
versity, Korea. His research interests 

include microarchitecture, digital design and embedded 
systems. 
 
 

JaeYung Jun received his B.Eng. 
from the Department of Electrical 
Engineering, Korea University, Seoul, 
Korea, in 2012, and is working on his 
PhD in the same department. His re-
search interests include microarchitec-
ture, system on chip, and digital 
design. 

 
 

Yeoul Na received her B.Eng. in 
Electrical Engineering from Korea 
University, Seoul, Korea, in 2008 and 
received a PhD in Electrical and 
Computer Engineering from the same 
university in 2015. She is now a post-
doctoral researcher in Prof. SeonWook 
Kim’s laboratory at Korea University. 

Her research interests include parallelization, JavaScript 
engines, compiler construction and microarchitecture. 

 
 

SeonWook Kim received a B.Eng. in 
Electronics and Computer Engineering 
from Korea University, Seoul, Korea, 
in 1988. He received an MSc in 
Electrical Engineering from Ohio State 
University, Columbus, Ohio, USA, in 
1990, and a PhD in Electrical and 
Computer Engineering from Purdue 

University, West Lafayette, Indiana, USA, in 2001. He 
was a senior researcher at the Agency for Defense 
Development from 1990 to 1995, and a staff software 
engineer at Inter/KSL from 2001 to 2002. Currently, he is 
a Professor with the School of Electrical and Computer 
Engineering at Korea University and is Associate Dean for 
Research at the College of Engineering. His research 
interests include compiler construction, microarchitecture, 
and SoC design. He is a senior member of ACM and IEEE. 

Copyrights © 2015 The Institute of Electronics and Information Engineers


