
IEIE Transactions on Smart Processing and Computing, vol. 4, no. 5, October 2015
http://dx.doi.org/10.5573/IEIESPC.2015.4.5.366

366

IEIE Transactions on Smart Processing and Computing

Design of a G-Share Branch Predictor for EISC Processor

InSik Kim1, JaeYung Jun2, Yeoul Na2, and Seon Wook Kim2

1 Department of Automotive Convergence, Korea University / Seoul, South Korea kiscj@korea.ac.kr
2 Department of Electrical and Computer Engineering, Korea University / Seoul, South Korea

{cool92-3, rapidsna, seon}@korea.ac.kr

* Corresponding Author: Seon Wook Kim

Received October 12, 2015; Accepted October 20, 2015; Published October 31, 2015

* Short Paper

Abstract: This paper proposes a method for improving a branch predictor for the extendable
instruction set computer (EISC) processor. The original EISC branch predictor has several
shortcomings: a small branch target buffer, absence of a global history, a one-bit local branch
history, and unsupported prediction of branches following LERI, which is a special instruction to
extend an immediate value. We adopt a G-share branch predictor and eliminate the existing
shortcomings. We verified the new branch predictor on a field-programmable gate array with the
Dhrystone benchmark. The newly proposed EISC branch predictor also accomplishes higher
branch prediction accuracy than a conventional branch predictor.

Keywords: Microarchitecture, Branch predictor, Digital logic circuits

1. Introduction

An addition of pipeline stages is one easy method to
increase an operational clock frequency; thus, modern
microprocessors have been developed to have deeper
pipeline stages. However, as the pipeline becomes deeper,
the branch miss penalty gets worse. For this reason,
modern microprocessors include very advanced branch
predictors [1].

EISC is the abbreviation for extendable instruction set
computer. This processor extends the immediate value of
instructions by using a special instruction called LERI [2],
and therefore, the processor can compact code size because
the immediate value is not large, in most cases (i.e., even
LERI is not needed). The EISC processor has a simple
branch predictor that delivers poor performance due to a
small branch target buffer (BTB), absence of branch
correlation, and a limit of a one-bit local branch history.
There are several solutions for these problems, such as
expanding the size of the BTB, adding a saturation counter,
implementing a pattern history table (PHT), and using a
global history register (GHR). A G-share branch predictor
has all of these components, and thus, it shows high branch
prediction accuracy with a relatively small area [3].

In this paper, we implement a G-share branch predictor
in the EISC processor to leverage its high prediction
accuracy. However, the performance of the G-share branch

predictor implemented in the EISC processor was worse
than expected due to the following two problems.

Prediction accuracy between G-share branch predictors
decreases when the distance of a pair of branches is so
close that the following branch makes a prediction even
before the previous branch history is updated in the GHR.

A distant branch target address that exceeds an
immediate bit field of the EISC branch instruction can be
expressed in combination with LERI instructions. The
current EISC branch predictor does not support a branch
instruction that is preceded by LERI instructions.

By solving these problems, we make main contribu-
tions in this paper as follows.

We propose a method to improve the G-share predictor
by updating the GHR speculatively with a previous
prediction history.

We propose logic that can predict branch instructions
following LERI instructions.

We verified our new branch predictor on a Xilinx
VIRTEX5 field-programmable gate array (FPGA) [4] with
the EISC processor and achieved a 136% improvement in
branch prediction accuracy compared to a conventional bi-
modal branch predictor.

The rest of the paper is organized as follows. Section 2
covers the background of EISC and its shortcomings.
Section 3 describes the implementation of the proposed
new EISC branch predictor, and its performance is

IEIE Transactions on Smart Processing and Computing, vol. 4, no. 5, October 2015

367

evaluated in Section 4. Finally, Section 5 concludes the
paper.

2. Background and Motivation

EISC instruction set architecture (ISA) has a special
instruction, called LERI to extend immediate values of
instructions. The EISC instructions are able to handle at
maximum 32-bit immediate values by using LERI up to
three times. As shown in Fig. 1, it can also be used to
specify a target address of a branch instruction so that a
program can jump anywhere in memory. Without LERI,
indirect branches should be used, which degrades
performance.

2.1 Analysis of an Original EISC Branch
Predictor

This section describes how an original EISC branch
predictor works and why its accuracy is low. A BTB
consists of a four-entry, fully associative cache for
predicting a branch target address, as shown in Fig. 2. Also,
no additional storage exists to store a history of branches
for predicting the direction of a branch. Instead, the branch
predictor stores only branches taken. Any branches in the
BTB are always predicted as taken. Because of this simple
mechanism, the branch predictor can be implemented with
a small area, and its latency becomes very short.

However, there are four performance issues in this
simple branch predictor. First, the original EISC branch
predictor can store only four branches. Second, this branch
predictor does not consider a global history of branches,
e.g., branch instructions in nested loops. Third, as the local
branch history has one-bit storage, all branches are
predicted as taken if there is a matched entry in the BTB.
In this case, if a direction of a branch alternates between

taken and not-taken states, the branch is continuously
mispredicted. Fourth, branch instructions following LERI
instructions are not supported by the BTB. Thus, those
unpredicted branches frequently cause pipeline stalls,
because there are so many branches accompanying LERI
instructions that jump a long distance, such as function call
routines. In this paper, we improve branch prediction
performance by redesigning the EISC branch predictor to
solve these four shortcomings.

2.2 G-share Branch Predictor
G-share is a two-level branch predictor based on the bi-

modal branch predictor [5]. With the program code shown
in Fig. 3, the original EISC branch predictor and the bi-
modal predictor miss the branch instruction in the last
iteration of an inner loop. However, G-share can predict
most branches correctly, because it uses a global history
register (GHR). The GHR is a shift register that stores
resolved directions of recent branches. Different phases of
a branch instruction can be distinguished by accessing a
pattern history table (PHT), XORing program counter (PC)
and GHR. Thus, the local history of a branch is stored as
multiple PHT entries according to the history of previous
branches.

As noted, four shortcomings of the original EISC
branch predictor are 1) a small BTB, 2) absence of a global
history, 3) a one-bit local branch history, and 4) lack of
prediction of branches following LERI instructions. The
low accuracy of the branch prediction due to these
shortcomings results in larger stalls in pipelines at deeper
pipelines.

A BTB can be expanded to more than four entries in G-
share, and its PHT stores two-bit local branch history
information with a two-bit saturation counter. As a result,
issues 1), 2), and 3) are solved by adopting the G-share
branch predictor.

2.3 Improved G-share Branch Predictor
Branch instructions are fetched consecutively with the

program code shown in Fig.. 4. In this case, branch B is
fetched into a pipeline before branch A arrives at the
execute stage. Consequently, when branch B is predicted
by reading its PHT entry, the GHR does not include the
history of branch A. On the other hand, when branch B
arrives at the execute stage and updates its PHT entry, the
GHR now includes the history of branch A. With these
different GHR states, single branch instruction B accesses
the different PHT entries when reading and updating the
PHT, which degrades accuracy of the branch predictor. In
addition, as the number of stages for fetch and decode
increases, this situation can occur more frequently, because
it takes more cycles to resolve a branch instruction after it

Fig. 1. Behavior of LERI Instruction.

Fig. 2. Original EISC Branch Predictor.

Fig. 1. Nested Loop Code for Testing G-share Branch
Predictor.

Kim et al.: Design of a G-Share Branch Predictor for EISC Processor

368

is fetched. We solve this problem by updating the GHR
speculatively in the fetch stage. Lastly, the issue of
predicting branches that follow LERI instructions can be
solved by implementing a logic that can recalculate an
actual branch instruction address.

3. Implementation

In this section, implementation of our new G-share
branch predictor is described.

3.1 Pattern History Table
Fig. 5 describes an overall structure of our pattern

history table (PHT). Each PHT entry is a two-bit saturation
counter, which increases with “taken” and decreases with
“not-taken.” It is used to predict the direction of a branch.
With 002or 012, the branch is predicted as not-taken,
whereas for 102 or 112, it is predicted as taken. We can
make the bi-modal branch predictor by using a PHT and a
BTB [5].

3.2 Global History Register and G-share
Branch Predictor

We implemented a global history register where size
depends on the PHT entry size:

 log₂(PHT size) = # bit of GHR (1)

Taken/not-taken information of resolved bran-ches is

inserted into the least significant bit (LSB) of the GHR, as

shown in Fig. 6. When a branch is fetched into a pipeline,
a part of PC and GHR is XORed to read its corresponding
entry in the PHT. After that, the branch instruction is
resolved, whether it is taken or not at the execute stage.
PHT and GHR are updated at this time for the next branch
prediction..

3.3 Improved G-share Branch Predictor
Fig. 7 shows an original G-share branch predictor

architecture. Due to deep pipelines, the GHR may not
include the history of preceding branches when a branch
needs to be predicted at the fetch stage. To solve this
problem, we implement another GHR at the fetch stage. It
speculatively stores a predicted branch direction at the
fetch stage, unlike the original GHR, which stores resolved
branch directions at the execute stage. However, a GHR at
the fetch stage can be updated with the wrong direction
due to misprediction of a preceding branch. To recover this,
the GHR at the fetch stage is overwritten with the original
GHR whenever a branch is mispredicted. As a result, the

Fig. 4. Continuous Branch Instructions.

Fig. 5. Saturation Counter and Pattern History Table.

Fig. 6. Global History Register.

Fig. 7. G-share Branch Predictor.

Fig. 2. Advanced Global History Register.

IEIE Transactions on Smart Processing and Computing, vol. 4, no. 5, October 2015

369

new GHR is used to read the PHT, and the original GHR is
used to write the PHT, as shown in Fig. 8.

3.4 Prediction Logic for Branch
Instruction Following LERI

The original EISC branch predictor does not predict
branches that are fetched right after LERI, and therefore,
such branches are always predicted as not-taken. The
reason is that LERI folding logic at the fetch stage
combines a LERI instruction and the following non-LERI
instruction into a single instruction, then passes it to the
decode stage. Therefore, LERI is not actually executed at
the execute stage but is folded with its following
instruction, which improves instruction per cycle (IPC).
An instruction goes through a pipeline with its PC and, for
a folded instruction, its PC is determined with the PC of
the first LERI instruction because of PC relative addressing
and exception. In the original architecture, the PC of a
branch following a LERI instruction cannot be known after
it is folded. For this reason, a branch with a LERI
instruction cannot be inserted into the BTB. To calculate
its PC, we implement the LERI folding logic at the fetch
stage to count the number of folded LERI instructions. The
fetch stage passes the value of the LERI counter as well as
an instruction, a folded PC and an extended immediate
value to the decode stage. At the decode stage, the actual
PC of a branch is calculated by adding the folded PC, i.e.,
the PC of the first LERI instruction with the value of the
LERI counter. This logic enables prediction of branches
following the LERI instructions.

4. Evaluation

In Section 4, we evaluate the performance of our new
branch predictor with the results of various test codes and
the Dhrystone benchmark program.

4.1 Performance with Conventional
G-share Branch Predictor

Fig. 9 shows example code of correlated branches. In
the figure, the branch of the inner loop can be predicted,
exploiting the global history. We executed this code with
various branch predictors. BTB-based and bi-modal branch
predictors show the same miss rate, 20.76%, because
neither of them considers the global history. On the other
hand, the G-share branch predictor, which considers the
global history, shows a 1.2% miss rate.

4.2 Performance with Improved G-share
Branch Predictor

The conventional G-share branch predictor does not
work normally with program code shown in Fig. 10. When
a branch instruction is predicted at the fetch stage, the
GHR may not have been updated with the history of all
previous branches, which negatively impacts prediction
accuracy. Therefore, we improved G-share by adding
another GHR, as shown in Section 3.3. Performance of our

enhanced G-share is shown in Table 2. The miss rate was
reduced from 20.6% to 1.4%.

4.3 Performance with Prediction for
Branches Preceded by LERI

To evaluate the prediction logic for branches preceded
by LERI instructions, Dhrystone [6] was used as a
benchmark program. We tested branch predictors with
various configurations, and the results are shown in Fig. 11.
After the branch predictor is able to predict the branch
following LERI, the bi-modal miss rate was reduced from
33% to 16%. With a five-bit G-share, the miss rate was
lowered from 30% to 15%. In particular, the miss rate of a
seven-bit G-share was decreased to approximately 1/4. In
addition, because the branch predictor has a larger PHT
and GHR, the effect of prediction logic for a branch
following a LERI instruction becomes greater. Our six-bit
G-share branch predictor has storage of an eight-byte PHT
(2 bits * 64), 12-bit GHRs (6 bits * 2), a 1.8KB BTB and
additional logic for addressing and synchronizing two

Table 1. Performance of G-share Branch Predictor.

Branch
Predictor

of branch
instructions

of miss
prediction Miss rate

BTB based 104 20.76%
Bi-modal 104 20.76%
G-share

501
6 1.20%

Table 2. Performance of Advanced G-share Branch
Predictor.

G-Share # of branch
instructions

of miss
prediction Miss rate

Original 103 20.60%
Enhanced

500
7 1.4%

Fig. 10. Test Code for the Advanced G-share Branch
Predictor.

Fig. 11. Performance of the G-share branch predictor
supporting branches following LERI instructions.

Kim et al.: Design of a G-Share Branch Predictor for EISC Processor

370

GHRs. Therefore, with a small area overhead, it shows
great improvement with respect to prediction accuracy.

5. Conclusion

In this paper, we proposed the design of a new G-share
branch predictor for the EISC processor. We identified the
shortcomings of the original EISC branch predictor and
enhanced it by adopting a G-share branch predictor. Also,
we addressed the performance issues of the adopted EISC
G-share branch predictor and presented feasible design
solutions. The proposed branch predictor was synthesized
and tested on an FPGA (Xilinx VIRTEX5) with the
Dhrystone benchmark. The proposed EISC branch
predictor that has a six-bit GHR and a 64-entry PHT shows
prediction accuracy of 91.02% (with an 8.98% miss rate).
Moreover, it improved prediction accuracy by 136%
compared to a bi-modal branch predictor that has a 64-
entry PHT without prediction logic for a branch following
LERI.

Acknowledgement

This work (Grants No. C0217499) was partially
supported by Business for Cooperative R&D between
Industry, Academy, and Research Institute funded Korea
Small and Medium Business Administration in 2014. This
work was also supported by the IT R&D program of
MOTIE/KEIT. [10052716, Design technology develop-
ment of ultra-low voltage operating circuit and IP for smart
sensor SoC] .

References

[1] Sprangle, E. and Carmean, D., "Increasing processor

performance by implementing deeper pipelines," Proc.
29th Annual Int. Symp. on Computer Architecture,
2002.

[2] Article (CrossRef Link)
[3] Advanced Digital Chips Inc., "Extenable Instruction

Set Computer," Article (CrossRef Link)
[4] Shien-Tai Pan, Kimming So, and Joseph T. Rahmeh,

"Improving the accuracy of dynamic branch pre-
diction using branch correlation," In Proc. of the fifth
int. conf. on Architectural support for programming
languages and operating systems, 1992.

[5] Article (CrossRef Link)
[6] Xilinx, "Virtex-5 Family Overview," Article

(CrossRef Link)
[7] Tse-Yu Yeh and Yale N. Patt, "Two-level adaptive

training branch prediction," In Proc. of the 24th
annual int. symp. on Microarchitecture, 1991.

[8] Article (CrossRef Link)
[9] Reinhold P. Weicker, "Dhrystone: a synthetic

systems programming benchmark," Magazine Com-
munications of the ACM, vol. 27, issue 10, pp. 1013-

1030, October 1984.
[10] Article (CrossRef Link)

InSik Kim received his B.Eng. from
the Department of Electronics and
Radio Engineering at Kyung Hee
University, Yong-in, Korea, in 2014.
Since 2014, he has been in the ma-
ster’s course in the Department of Au-
tomotive Convergence at Korea Uni-
versity, Korea. His research interests

include microarchitecture, digital design and embedded
systems.

JaeYung Jun received his B.Eng.
from the Department of Electrical
Engineering, Korea University, Seoul,
Korea, in 2012, and is working on his
PhD in the same department. His re-
search interests include microarchitec-
ture, system on chip, and digital
design.

Yeoul Na received her B.Eng. in
Electrical Engineering from Korea
University, Seoul, Korea, in 2008 and
received a PhD in Electrical and
Computer Engineering from the same
university in 2015. She is now a post-
doctoral researcher in Prof. SeonWook
Kim’s laboratory at Korea University.

Her research interests include parallelization, JavaScript
engines, compiler construction and microarchitecture.

SeonWook Kim received a B.Eng. in
Electronics and Computer Engineering
from Korea University, Seoul, Korea,
in 1988. He received an MSc in
Electrical Engineering from Ohio State
University, Columbus, Ohio, USA, in
1990, and a PhD in Electrical and
Computer Engineering from Purdue

University, West Lafayette, Indiana, USA, in 2001. He
was a senior researcher at the Agency for Defense
Development from 1990 to 1995, and a staff software
engineer at Inter/KSL from 2001 to 2002. Currently, he is
a Professor with the School of Electrical and Computer
Engineering at Korea University and is Associate Dean for
Research at the College of Engineering. His research
interests include compiler construction, microarchitecture,
and SoC design. He is a senior member of ACM and IEEE.

Copyrights © 2015 The Institute of Electronics and Information Engineers

