DOI QR코드

DOI QR Code

Fabrication of NiO-Y:BaZrO3 Composite Anode for Thin Film-Protonic Ceramic Fuel Cells using Tape-Casting

  • Bae, Kiho (School of Mechanical Engineering, Korea University) ;
  • Noh, Ho-Sung (High-temperature Energy Materials Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Jang, Dong Young (School of Mechanical Engineering, Korea University) ;
  • Kim, Manjin (School of Mechanical Engineering, Korea University) ;
  • Kim, Hyun Joong (School of Mechanical Engineering, Korea University) ;
  • Hong, Jongsup (High-temperature Energy Materials Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Jong-Ho (High-temperature Energy Materials Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Byung-Kook (High-temperature Energy Materials Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Son, Ji-Won (High-temperature Energy Materials Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Shim, Joon Hyung (School of Mechanical Engineering, Korea University)
  • Received : 2015.07.23
  • Accepted : 2015.08.07
  • Published : 2015.09.30

Abstract

Optimization of the fabrication process of NiO-yttrium doped barium zirconate (BZY) composite anode substrates using tape-casting for high performance thin-film protonic ceramic fuel cells (PCFCs) is investigated. The anode substrate is composed of a tens of microns-thick anode functional layer laminated over a porous anode substrate. The macro-pore structure of the anode support is induced by micron-scale polymethyl methacrylate (PMMA) pore formers. Thermal gravity analysis (TGA) and a dilatometer are used to determine the polymeric additive burn-out and sintering temperatures. Crystallinity and microstructure of the tape-cast NiO-BZY anode are analyzed after the sintering.

Keywords

References

  1. B. C. H. Steele and A. Heinzel, "Materials for Fuel-cell Technologies," Nature, 414 [6861] 345-52 (2001). https://doi.org/10.1038/35104620
  2. E. D. Wachsman and K. T. Lee, "Lowering the Temperature of Solid Oxide Fuel Cells," Science, 334 [6058] 935-39 (2011). https://doi.org/10.1126/science.1204090
  3. S. C. Singhal, "Solid Oxide Fuel Cells : Designs, Materials, and Applications," J. Korean Ceram. Soc., 42 [12] 777-86 (2005). https://doi.org/10.4191/KCERS.2005.42.12.777
  4. R. J. Gorte, S. Park, J. M. Vohs, and C. Wang, "Anodes for Direct Oxidation of Dry Hydrocarbons in a Solid-oxide Fuel Cell," Adv. Mater., 12 [19] 1465-69 (2000). https://doi.org/10.1002/1521-4095(200010)12:19<1465::AID-ADMA1465>3.0.CO;2-9
  5. Z. Shao, S. M. Haile, J. Ahn, P. D. Ronney, Z. Zhan, and S. A. Barnett, "A Thermally Self-sustained Micro Solid-oxide Fuel-cell Stack with High Power Density," Nature, 435 [7043] 795-98 (2005). https://doi.org/10.1038/nature03673
  6. H. Yokokawa, T. Horita, K. Yamaji, H. Kishimoto, and M. E. Brito, "Degradation of SOFC Cell/Stack Performance in Relation to Materials Deterioration," J. Korean Ceram. Soc., 49 [1] 11-8 (2012). https://doi.org/10.4191/kcers.2012.49.1.011
  7. K. Park, S. Yu, J. Bae, H. Kim, and Y. Ko, "Fast Performance Degradation of SOFC Caused by Cathode Delamination in Long-term Testing," Int. J. Hydrogen Energ., 35 [16] 8670-77 (2010). https://doi.org/10.1016/j.ijhydene.2010.05.005
  8. Y.-S. Chou and J. W. Stevenson, "Thermal Cycling and Degradation Mechanisms of Compressive Mica-based Seals for Solid Oxide Fuel Cells," J. Power Sources, 112 [2] 376- 83 (2002). https://doi.org/10.1016/S0378-7753(02)00444-5
  9. H.-S. Noh, J.-W. Son, H. Lee, H.-R. Kim, J.-H. Lee, and H.- W. Lee, "Thin Film $(La_{0.7}Sr_{0.3})_{0.95}MnO_{3-{\delta}}$ Fabricated by Pulsed Laser Deposition and Its Application as a Solid Oxide Fuel Cell Cathode for Low-temperature Operation," J. Korean Ceram. Soc., 47 [1] 75-81 (2010). https://doi.org/10.4191/KCERS.2010.47.1.075
  10. H.-S. Noh, J.-W. Son, H. Lee, H.-S. Song, H.-W. Lee, and J.- H. Lee, "Low Temperature Performance Improvement of SOFC with Thin Film Electrolyte and Electrodes Fabricated by Pulsed Laser Deposition," J. Electrochem. Soc., 156 [12] B1484-90 (2009). https://doi.org/10.1149/1.3243859
  11. H.-S. Noh, J.-W. Son, H. Lee, H.-I. Ji, J.-H. Lee, and H.-W. Lee, "Suppression of Ni Agglomeration in PLD Fabricated Ni-YSZ Composite for Surface Modification of SOFC Anode," J. Eur. Ceram. Soc., 30 [16] 3415-23 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.07.035
  12. Y. J. Leng, S. H. Chan, K. A. Khor, and S. P. Jiang, "Performance Evaluation of Anode-supported Solid Oxide Fuel Cells with Thin Film YSZ Electrolyte," Int. J. Hydrogen Energ., 29 [10] 1025-33 (2004). https://doi.org/10.1016/j.ijhydene.2004.01.009
  13. A. Leonide, V. Sonn, A. Weber, and E. Ivers-Tiffee, "Evaluation and Modeling of the Cell Resistance in Anode-Supported Solid Oxide Fuel Cells," J. Electrochem. Soc., 155 [1] B36-41 (2008). https://doi.org/10.1149/1.2801372
  14. J. H. Shim, C. C. Chao, H. Huang, and F. B. Prinz, "Atomic Layer Deposition of Yttria-stabilized Zirconia for Solid Oxide Fuel Cells," Chem. Mater., 19 [15] 3850-54 (2007). https://doi.org/10.1021/cm070913t
  15. A. Evans, A. Bieberle-Hütter, J. L. M. Rupp, and L. J. Gauckler, "Review on Microfabricated Micro-solid Oxide Fuel Cell Membranes," J. Power Sources, 194 [1] 119-29 (2009). https://doi.org/10.1016/j.jpowsour.2009.03.048
  16. K. Bae, D. Y. Jang, H. J. Jung, J. W. Kim, J. W. Son, and J. H. Shim, "Micro Ceramic Fuel Cells with Multilayered Yttrium-doped Barium Cerate and Zirconate Thin Film Electrolytes," J. Power Sources, 248 1163-69 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.057
  17. S. Primdahl and M. Mogensen, "Oxidation of Hydrogen on Ni/Yttria-Stabilized Zirconia Cermet Anodes," J. Electrochem. Soc., 144 [10] 3409-19 (1997). https://doi.org/10.1149/1.1838026
  18. H. Iwahara, "Proton Conducting Ceramics and Their Applications," Solid State Ionics, 86-8 9-15 (1996). https://doi.org/10.1016/0167-2738(96)00087-2
  19. H. G. Bohn and T. Schober, "Electrical Conductivity of the High-temperature Proton Conductor BaZr(0.9)Y(0.1)O(2.95)," J. Am. Ceram. Soc., 83 [4] 768-72 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01272.x
  20. K. D. Kreuer, "Proton-conducting Oxides," Annu. Rev. Mater. Res., 33 333-59 (2003). https://doi.org/10.1146/annurev.matsci.33.022802.091825
  21. S.-J. Song, E. D. Wachsman, S. E. Dorris, and U. Balachandran, "Defect Chemistry Modeling of High-temperature Proton- conducting Cerates," Solid State Ionics, 149 [1-2] 1-10 (2002). https://doi.org/10.1016/S0167-2738(02)00147-9
  22. T. Schober, W. Schilling, and H. Wenzl, "Defect Model of Proton Insertion into Oxides," Solid State Ionics, 86-88 Part 1 653-58 (1996). https://doi.org/10.1016/0167-2738(96)00230-5
  23. H. I. Ji, B. K. Kim, J. H. Yu, S. M. Choi, H. R. Kim, J. W. Son, H. W. Lee, and J. H. Lee, "Three Dimensional Representations of Partial Ionic and Electronic Conductivity Based on Defect Structure Analysis of BaZr0.85Y0.15O3- delta," Solid State Ionics, 203 [1] 9-17 (2011). https://doi.org/10.1016/j.ssi.2011.09.016
  24. K. H. Ryu and S. M. Haile, "Chemical Stability and Proton Conductivity of Doped $BaCeO_3-BaZrO_3$ Solid Solutions," Solid State Ionics, 125 [1-4] 355-67 (1999). https://doi.org/10.1016/S0167-2738(99)00196-4
  25. S. Barison, M. Battagliarin, T. Cavallin, L. Doubova, M. Fabrizio, C. Mortalo, S. Boldrini, L. Malavasi, and R. Gerbasi, "High Conductivity and Chemical Stability of $BaCe_{1-x-y}Zr_xY_yO_{3-{\delta}}$ Proton Conductors Prepared by a Sol-gel Method," J. Mater. Chem., 18 [42] 5120-28 (2008). https://doi.org/10.1039/b808344d
  26. C. W. Kwon, J. W. Son, J. H. Lee, H. M. Kim, H. W. Lee, and K. B. Kim, "High-performance Micro-solid Oxide Fuel Cells Fabricated on Nanoporous Anodic Aluminum Oxide Templates," Adv. Funct. Mater., 21 [6] 1154-59 (2011). https://doi.org/10.1002/adfm.201002137
  27. A. Mukherjee, B. Maiti, A. Das Sharma, R. N. Basu, and H. S. Maiti, "Correlation between Slurry Rheology, Green Density and Sintered Density of Tape Cast Yttria Stabilised Zirconia," Ceram. Int., 27 [7] 731-39 (2001). https://doi.org/10.1016/S0272-8842(00)00121-8
  28. H. Moon, S. D. Kim, S. H. Hyun, and H. S. Kim, "Development of IT-SOFC Unit Cells with Anode-supported Thin Electrolytes via Tape Casting and Co-firing," Int. J. Hydrogen Energ., 33 [6] 1758-68 (2008). https://doi.org/10.1016/j.ijhydene.2007.12.062
  29. X. Huang and W. J. Brittain, "Synthesis and Characterization of PMMA Nanocomposites by Suspension and Emulsion Polymerization," Macromolecules, 34 [10] 3255-60 (2001). https://doi.org/10.1021/ma001670s
  30. P. Babilo, T. Uda, and S. M. Haile, "Processing of Yttriumdoped Barium Zirconate for High Proton Conductivity," J. Mater. Res., 22 [5] 1322-30 (2007). https://doi.org/10.1557/jmr.2007.0163
  31. P. Babilo and S. M. Haile, "Enhanced Sintering of Yttriumdoped Barium Zirconate by Addition of ZnO," J. Am. Ceram. Soc., 88 [9] 2362-68 (2005). https://doi.org/10.1111/j.1551-2916.2005.00449.x
  32. F. F. Lange, "Constrained Network Model for Predicting Densification Behavior of Composite Powders," J. Mater. Res., 2 [01] 59-65 (1987). https://doi.org/10.1557/JMR.1987.0059
  33. K. Bae, D. Y. Jang, H.-S. Noh, H. J. Kim, J. Hong, K. J. Yoon, B.-K. Kim, J.-W. Son, and J. H. Shim, "High-performance Protonic Ceramic Fuel Cells with Thin-film Yttriumdoped Barium Zirconate Electrolyte and Nickel Oxide- Yttrium-doped Barium Zirconate Interlayers," Adv. Energy Mater., submitted.

Cited by

  1. High-performance thin-film protonic ceramic fuel cells fabricated on anode supports with a non-proton-conducting ceramic matrix vol.4, pp.17, 2016, https://doi.org/10.1039/C5TA10670B
  2. Processing Ceramic Proton Conductor Membranes for Use in Steam Electrolysis vol.10, pp.11, 2015, https://doi.org/10.3390/membranes10110339