DOI QR코드

DOI QR Code

Least Square Prediction Error Expansion Based Reversible Watermarking for DNA Sequence

최소자승 예측오차 확장 기반 가역성 DNA 워터마킹

  • 이석환 (동명대학교 정보보호학과) ;
  • 권성근 (경일대학교, 전자공학과) ;
  • 권기룡 (부경대학교, IT융합응용공학과)
  • Received : 2015.06.23
  • Accepted : 2015.11.03
  • Published : 2015.11.25

Abstract

With the development of bio computing technology, DNA watermarking to do as a medium of DNA information has been researched in the latest time. However, DNA information is very important in biologic function unlikely multimedia data. Therefore, the reversible DNA watermarking is required for the host DNA information to be perfectively recovered. This paper presents a reversible DNA watermarking using least square based prediction error expansion for noncodng DNA sequence. Our method has three features. The first thing is to encode the character string (A,T,C,G) of nucleotide bases in noncoding region to integer code values by grouping n nucleotide bases. The second thing is to expand the prediction error based on least square (LS) as much as the expandable bits. The last thing is to prevent the false start codon using the comparison searching of adjacent watermarked code values. Experimental results verified that our method has more high embedding capacity than conventional methods and mean prediction method and also makes the prevention of false start codon and the preservation of amino acids.

바이오컴퓨팅 기술이 발전함에 따라 DNA 정보를 매개물로 한 DNA 워터마킹에 대한 연구가 이루어지고 있다. 그러나 DNA 정보는 일반 멀티미디어 데이터와는 달리 생물학적으로 중요한 정보이므로, 원본 DNA가 복원이 되는 가역성 DNA 워터마킹 기술이 필요하다. 본 논문에서는 최소자승 (Least square) 예측오차 확장 (prediction error expansion) 기반으로 비부호 DNA 서열의 가역성 워터마킹 기법을 제안한다. 제안한 방법에서는 비부호 영역의 4-문자 염기서열들을 인접한 개 염기에 의한 정수형 부호계수로 변환한다. 그리고 현재 부호계수에 대한 최소자승 예측 오차를 구한 다음, 예측오차 확장 조건에 따라 결정된 비트수만큼 예측오차를 확장한다. 이때 은닉된 인접 염기서열 간의 비교탐색을 통하여 허위개시코돈 생성을 방지한다. 실험 결과로부터 제안한 예측오차 확장 방법이 기존 방법과 평균 예측오차 확장 방법보다 높은 워터마크 용량을 가지며, 생물학적 변이 및 허위개시코돈이 발생되지 않음을 확인하였다.

Keywords

References

  1. G. M. Church, Y. Gao, S. Kosuri, "Next-Generation Digital Information Storage in DNA," Science, vol. 337, no. 6102, pp. 1628, Sep. 2012. https://doi.org/10.1126/science.1226355
  2. N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E.M. LeProust, B. Sipos, E. Birney, "Towards practical high-capacity, low-maintenance information storage in synthesized DNA," Nature, vol. 494, pp. 77-80, Feb. 2013. https://doi.org/10.1038/nature11875
  3. C. T. Clelland, V. Risca, C. Bancroft, "Hiding messages in DNA microdots," Nature, vol. 399, pp. 533-534, June 1999. https://doi.org/10.1038/21092
  4. M. Borda and O. Tornea, "DNA secret writing techniques," 8th International Conference on Communications (COMM), pp. 451-456, June 2010.
  5. S.-H. Lee and K.-R. Kwon, "DNA Information Hiding Method for DNA Data Storage," Journal of The Institute of Electronics and Information Engineers, vol. 51, no. 10, pp. 118-127, Oct. 2014. https://doi.org/10.5573/ieie.2014.51.10.118
  6. D. Heider and A. Barnekow, "DNA-based watermarks using the DNA-Crypt algorithm," BMC Bioinformatics, vol. 8, no. 176, May 2007.
  7. D. Heider and A. Barnekow, "DNA Watermarks- A proof of concept," BMC Bioinformatics, vol. 9, no. 40, April 2008.
  8. M. Liss, D. Daubert, K. Brunner, K. Kliche, U. Hammes, A. Leiherer, and R. Wagner, "Embedding Permanent Watermarks in Synthetic Genes," PLOS ONE, vol. 7, issue 8, e42465, Aug. 2012. https://doi.org/10.1371/journal.pone.0042465
  9. S.-H. Lee, "DNA sequence watermarking based on random circular angle," Digital Signal Processing, vol. 25, pp. 173-189, Feb. 2014. https://doi.org/10.1016/j.dsp.2013.11.010
  10. S.-H. Lee, "DWT based coding DNA watermarking for DNA copyright protection," Information Sciences, vol. 273, pp. 263-286, July, 2014. https://doi.org/10.1016/j.ins.2014.03.039
  11. S.-H. Lee, S.-G. Kwon, and K.-R. Kwon, "A Robust DNA Watermarking in Lifting Based 1D DWT Domain," Journal of The Institute of Electronics and Information Engineers, vol. 49, no. 10, pp. 91-101, Oct. 2012. https://doi.org/10.5573/ieek.2012.49.10.091
  12. T. Chen, "A Novel Biology-Based Reversible Data Hiding Fusion Scheme," Frontiers in Algorithmics, Lecture Notes in Computer Science, vol. 4613, pp 84-95, 2007.
  13. Y.-H. Huang, C.-C. Chang, and C.-Y. Wu, "A DNA-based data hiding technique with low modification rates," Multimedia Tools and Applications, vol. 70, issue 3, pp 1439-1451, June 2014. https://doi.org/10.1007/s11042-012-1176-z
  14. G. Liu, H. Liu, and A. Kadir, "Hiding message into DNA sequence through DNA coding and chaotic map," Medical & Biological Engineering & Computing, vol. 52, issue 9, pp. 741-747, Sep. 2014. https://doi.org/10.1007/s11517-014-1177-3
  15. S.-H. Lee and K.-R. Kwon, "Consecutive Difference Expansion Based Reversible DNA Watermarking," Journal of The Institute of Electronics and Information Engineers, To be published on July 2015.
  16. D.M. Thodi et al. "Expansion Embedding Techniques for Reversible Watermarking," IEEE Trans. on Image Processing, vol. 16, no. 3, March 2007.
  17. D. Coltuc, "Improved Embedding for Prediction-Based Reversible Watermarking," IEEE Transactions on Information Forensics and Security, vol. 6, issue 3, pp. 873-882, Sept. 2011. https://doi.org/10.1109/TIFS.2011.2145372
  18. I.-C. Dragoi and D. Coltuc, "Local-Prediction-Based Difference Expansion Reversible Watermarking," IEEE Transactions on Image Processing, vol. 23, issue 4, pp. 1779-1790, April 2014. https://doi.org/10.1109/TIP.2014.2307482
  19. W.-J. Kim, P.-H. Kim, J.-H. Le, K.-H. Jung, and K.-Y. Yoo, "Reversible Data Hiding Method Based on Min/Max in 2x2 Sub-blocks," Journal of The Institute of Electronics and Information Engineers, vol. 51, no. 4, pp. 69-75, April 2014. https://doi.org/10.5573/ieie.2014.51.4.069

Cited by

  1. Reversible Data Hiding for DNA Sequence Using Multilevel Histogram Shifting vol.2018, pp.1939-0122, 2018, https://doi.org/10.1155/2018/3530969
  2. A reversible watermarking for DNA sequence using an adaptive least square prediction error expansion vol.11, pp.1, 2015, https://doi.org/10.1587/nolta.11.2