DOI QR코드

DOI QR Code

인지질분해효소D에 의해 유도된 소낭 융합에 대한 상 비대칭의 영향

Phase Asymmetry Effect on Vesicle Fusion Induced by Phospholipase D

  • 박진원 (서울과학기술대학교 에너지바이오대학 화공생명공학과)
  • Park, Jin-Won (Department of Chemical and Biomolecular Engineering, College of Energy and Biotechnology, Seoul National University of Science and Technology)
  • 투고 : 2015.02.05
  • 심사 : 2015.03.03
  • 발행 : 2015.12.01

초록

구형인지질이중층인 소낭이 이중에멀젼기법에 의해서 제조되었다. 소낭의 바깥층에서 인지질분해효소D에 의해 촉진되는 Phosphatidylcholine의 Phosphatidic-acid 전환은 소낭의 곡률반경을 변화시키고 궁극적으로는 소낭들의 융합을 유도한다. 인지질층의 물성이 융합에 끼치는 영향을 형광세기변화의 측정으로 규명하였다. 측정 전에, 형광세기에 대한 융합의 등급화를 수행하였다. 8-Aminonaphthalene-1,3,6-trisulfonic acid disodium salt(ANTS)와 p-Xylene-bis(N-pyridinium bromide)(DPX)이 각각 캡슐화된 소낭들을 1:1로 섞은 조건의 형광세기를 0% 융합으로 설정하였으며, ANTS와 DPX가 섞인 채로 캡슐화된 소낭의 형광세기를 100% 융합으로 설정하였다. 형광물질의 누출을 고려하여 별도의 실험에서 누출에 의한 형광세기 변화를 측정하였다. 인지질분해효소D에 의해 유도된 소낭들의 거동을 관찰한 결과, 안층이 액상인 조건에서만 융합이 일어났다. 그러나, 융합은 바깥층의 상에 의해서는 영향을 받지 않는 것으로 나타났다. 바깥층의 상은 누출에 영향을 주었으며, 이 결과는 층의 밀도와 측면확산에 기인한 것으로 이해된다.

Spherical phospholipid bilayers, vesicles, were formed with respect to phase of each layer via a double emulsion technique. The conversion of phosphatidylcholine (PC) to phosphatidic acid (PA) at the outer layer, caused by phospholipase D (PLD), induced a curvature change in the vesicles, which eventually led them to fuse each other. The effect of the lipid layer physical-properties on the PLD-induced vesicle fusion was investigated using the fluorescence intensity change. 8-Aminonaphthalene-1,3,6-trisulfonic acid disodium salt(ANTS) and p-Xylene-bis(N-pyridinium bromide)(DPX) were encapsulated in the vesicles, respectively, for the quantification of the fusion. The fluorescence scale was calibrated with the fluorescence of a 1/1 mixture of ANTS and DPX vesicles in NaCl buffer taken as 100% fluorescence (0% fusion) and the vesicles containing both ANTS and DPX as 0% fluorescence (100% fusion), considering the leakage into the medium studied directly in a separate experiment using vesicles containing both ANTS and DPX. It was observed that the fusion occurred to the liquid-phase of the inner layer only. The fusion behaviors were very similar for both solid and liquid of the outer layer. However, the leakage was faster for the solid-phase outer-layer than the liquid-phase outer-layer. The difference in the leakage seems to be caused by the lipid concentration and the lateral diffusivity in the layer.

키워드

참고문헌

  1. McDermott, M., Wakelam, M. J. and Morris, A. J., "Phospholipase D," Biochem. Cell Biol., 82, 225-253(2004). https://doi.org/10.1139/o03-079
  2. Exton, J. H., "Phospholipase D: Structure, Regulation and Function," Rev. Physiol. Biochem. Pharmacol., 144, 1-94(2002). https://doi.org/10.1007/BFb0116585
  3. Huang, P. and Frohman, M. A., "The Potential for Phospholipase D as a New Therapeutic Target," Exp. Opin. Ther. Targets, 11, 707-716(2007). https://doi.org/10.1517/14728222.11.5.707
  4. Tappia, P. S., Dent, M. R. and Dhalla, N. S., "Oxidative Stress and Redox Regulation of Phospholipase D in Myocardial Disease," Free Radical Biol. Med., 41, 349-361(2006). https://doi.org/10.1016/j.freeradbiomed.2006.03.025
  5. Scott, S. A., Selvy, P. E., Buck, J. R., Cho, H. P., Criswell, T. L., Thomas, A. L., Armstrong, M. D., Arteaga, C. L., Lindsley, C. W. and Brown, H. A., "Design of Isoform-selective Phospholipase D Inhibitors that Modulate Cancer Cell Invasiveness," Nat. Chem. Biol., 5, 108-117(2009). https://doi.org/10.1038/nchembio.140
  6. Brown, H. A., Henage, L. G., Preininger, A. M., Xiang, Y. and Exton, J. H., Lipidomics and Bioactive Lipids: Lipids and Cell Signaling, Academic Press, Amsterdam, Netherlands, 58-100 (2007).
  7. Lee, B., Choi, G. G., Choi, Y. E., Sung, M., Park, M. S. and Yang, J. W., "Enhancement of Lipid Productivity by Ethyl Methane Sulfonate-mediated Random Mutagenesis and Proteomic Analysis in Chlamydomonas Reinhardtii," Korean J. Chem. Eng., 31, 1036-1042(2014). https://doi.org/10.1007/s11814-014-0007-5
  8. Ham, S. M., Yoo, I. S., Park, S. J. and Kim, J. H., "Extraction of Intracellular Lipids from Recombinant E. coli for Improving Longchain Fatty Acid Production," Korean Chem. Eng. Res., 51, 482-486(2013). https://doi.org/10.9713/kcer.2013.51.4.482
  9. Ingolia, T. D. and Koshland, D. E. Jr., "The Role of Calcium in Fusion of Artificial Vesicles," J. Biol. Chem., 253, 3821-9382(1978).
  10. Wilschut, J. and Papahadjopoulos, D., "$Ca^{2+}$-induced Fusion of Phospholipid Vesicles Monitored by Mixing of Aqueous Contents," Nature, 281, 690-692(1979). https://doi.org/10.1038/281690a0
  11. Hoekstra, D., Yaron, A., Carmel, A. and Scherphof, G., "Fusion of Phospholipid Vesicles Containing a Trypsin-sensitive Fluorogenic Substrate and Trypsin: a New Method to Study Membrane Fusion Activity in a Model System," FEBS Lett., 106, 176-180(1979). https://doi.org/10.1016/0014-5793(79)80722-X
  12. Keller, P. M., Person, S. and Snipes, W., "A Fluorescence Enhancement Assay of Cell Fusion," J. Cell Sci., 28, 167-177(1977).
  13. Gibson, G. A. and Loew, L. M., "Phospholipid Vesicle Fusion Monitored by Fluorescence Energy Transfer," Biochem. Biophys. Res. Commun., 88, 135-40(1979). https://doi.org/10.1016/0006-291X(79)91707-8
  14. Owen, C. S., "A Membrane-bound Fluorescent Probe to Detect Phospholipid Vesicle-cell Fusion," J. Membr. Biol., 54, 13-20(1980). https://doi.org/10.1007/BF01875372
  15. Vanderwerf, P. and Ullman, E. F., "Monitoring of Phospholipid Vesicle Fusion by Fluorescence Energy Transfer Between Membrane-bound Dye Labels," Biochim. Biophys. Acta, 596, 302-314 (1980). https://doi.org/10.1016/0005-2736(80)90363-6
  16. Uster, P. S. and Deamer, D. W., "Fusion Competence of Phosphatidylserine-containing Liposomes Quantitatively Measured by a Fluorescence Resonance Energy Transfer Assay," Arch. Biochem. Biophys., 209, 385-395(1981). https://doi.org/10.1016/0003-9861(81)90296-4
  17. Struck, D. K., Hoekstra, D. and Pagano, R. E., "Use of Resonance Energy Transfer to Monitor Membrane Fusion," Biochemistry, 14, 4093-4099(1981).
  18. Ellens, H., Bentz, J. and Szoka, F. C., "pH-induced Destabilization of Phosphatidylethanolamine-containing Liposomes: Role of Bilayer Contact," Biochemistry, 27, 1532-1538(1984).
  19. Bentz, J., Duzgunes, N. and Nir, S., "Temperature Dependence of Divalent Cation Induced Fusion of Phosphatidylserine Liposomes: Evaluation of the Kinetic Rate Constants," Biochemistry, 24, 1064-1072(1985). https://doi.org/10.1021/bi00325a039
  20. Park, J.-W., "Effect of Phospholipid Bilayer Phase Asymmetry on Phospholipase D Reaction-induced Vesicle Rupture," J. Membr. Biol., 244, 55-59(2011). https://doi.org/10.1007/s00232-011-9397-z
  21. Park, J.-W., "Phase Effect of Mixed-phospholipid Layer on Phospholipase D Reaction-induced-vesicle Rupture," Colloids Surf. B: Biointerfaces, 97, 207-210(2012). https://doi.org/10.1016/j.colsurfb.2012.04.034
  22. Park, J.-W., "Correlation Between Composition of the Outer Layer and Phase Asymmetry for Vesicles Ruptured by Phospholipase D," J. Membr. Biol., 246, 399-405(2013). https://doi.org/10.1007/s00232-013-9551-x
  23. Lee, G. S. and Park, J.-W., "Effect of Vesicle Curvature on Phospholipase D Reaction-induced-rupture," Bull. Korean Chem. Soc., 34, 3223-3226(2013). https://doi.org/10.5012/bkcs.2013.34.11.3223
  24. New, R. R. C., Liposomes: A Practical Approach, Academic Press, New York, 66-70(1990).
  25. Lide, D. R., CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data, 85th edition, CRC Press, Boca Raton, 2005, 220-246(2005).
  26. Park, J.-W., "Nanoliter Reactor Arrays for Antibiotic Study," Bull. Korean Chem. Soc., 28, 1709-1714(2007). https://doi.org/10.5012/bkcs.2007.28.10.1709
  27. Webb, L. M., Arnholt, A. T. and Venable, M. E., "Phospholipase D Modulation by Ceramide in Senescence," Mol. Cell Biochem., 337, 153-158(2010). https://doi.org/10.1007/s11010-009-0294-z
  28. Cheow, W. S., Chang, M. W. and Hadinoto, K., "Antibacterial Efficacy of Inhalable Antibiotic-Encapsulated Biodegradable Polymeric Nanoparticles against E. coli Biofilm Cells," J. Biomed. Nanotechnol., 6, 391-403(2010). https://doi.org/10.1166/jbn.2010.1116
  29. Furt, F. and Moreau, P., "Importance of Lipid Metabolism for Intracellular and Mitochondrial Membrane Fusion/fission Processes," Int. J. Biochem. Cell Biol., 41, 1828-1836(2009). https://doi.org/10.1016/j.biocel.2009.02.005
  30. Park, J.-W. and Ahn, D. J., "Temperature Effect on Nanometer-scale Physical Properties of Mixed Phospholipid Monolayers," Colloids Surf. B: Biointerfaces, 62, 157-161(2008). https://doi.org/10.1016/j.colsurfb.2007.09.020
  31. Schram, V., Lin, H.-N. and Thompson, T. E., "Topology of Gel-phase Domains and Lipid Mixing Properties in Phase-separated Two-component Phosphatidylcholine Bilayers," Biophys. J., 71, 1811-1822(1996). https://doi.org/10.1016/S0006-3495(96)79382-7