DOI QR코드

DOI QR Code

Comparison of Pectin Hydrogel Collection Methods in Microfluidic Device

미세유체 장치에서 수거 방법에 따른 펙틴 하이드로겔 입자의 특성 비교

  • Kim, Chaeyeon (Department of Energy Science and Technology, Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Park, Ki-Su (Department of Chemical Engineering, Chungnam National University) ;
  • Kang, Sung-Min (Department of Chemical Engineering, Chungnam National University) ;
  • Kim, Jongmin (Department of Chemical Engineering, Chungnam National University) ;
  • Song, YoungShin (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
  • 김채연 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 박기수 (충남대학교 공과대학 화학공학과) ;
  • 강성민 (충남대학교 공과대학 화학공학과) ;
  • 김종민 (충남대학교 공과대학 화학공학과) ;
  • 송영신 (충남대학교 공과대학 화학공학과) ;
  • 이창수 (충남대학교 공과대학 화학공학과)
  • Received : 2015.06.19
  • Accepted : 2015.08.21
  • Published : 2015.12.01

Abstract

This study investigated the effect of different collection methods on physical properties of pectin hydrogels in microfluidic synthetic approach. The pectin hydrogels were simply produced by the incorporation of calcium ions dissolved in continuous mineral oil. Then, different collection methods, pipetting, tubing, and settling, for harvesting pectin hydrogels were applied. The settling method showed most uniform and monodispersed hydrogels. In the case of settling, a coefficient of variation was 3.46 which was lower than pipetting method (18.60) and tubing method (14.76). Under the settling method, we could control the size of hydrogels, ranging from $30{\mu}m$ to $180{\mu}m$, by simple manipulation of the viscosity of pectin and volumetric flow rate of dispersed and continuous phase. Finally, according to the characteristics of simple encapsulation of biological materials, we envision that the pectin hydrogels can be applied to drug delivery, food, and biocompatible materials.

본 연구는 미세유체 장치를 통해 제조가 이루어진 펙틴 하이드로겔 입자의 수거 방법을 다르게 하였을 때 각 방법에 따른 하이드로겔의 물리적 특성을 비교한 것이다. 펙틴 하이드로겔 입자는 미세유체 채널 내에서 미네랄 오일에 분산된 칼슘 이온에 의해 겔화되고 이후 각각 파이펫팅법, 튜브법, 침전법을 통해 수거하였다. 각 방법으로 수거된 펙틴 하이드로겔 입자의 단분산성을 분석한 결과 침전법의 변동 계수(Coefficient of variation)는 3.46으로 파이펫팅법(18.60)과 튜브법(14.76)의 변동 계수보다 월등히 낮아 가장 우수한 단분산성 하이드로겔 입자를 만들 수 있었다. 상기 침전법을 이용한 조건에서 분산상과 연속상의 부피유속 및 펙틴 용액의 점도를 조절함으로써 $30{\mu}m$에서 $180{\mu}m$까지의 다양한 크기를 갖는 단분산성 펙틴 하이드로겔을 제조할 수 있었다. 본 논문에서 제시한 펙틴 하이드로겔 입자는 생체 물질을 손쉽게 함입할 수 있으므로 이는 향후 약물전달, 식품, 그리고 생체적합성 재료 등으로 활용 가능할 것으로 기대된다.

Keywords

References

  1. Hoare, T. R. and Kohane, D. S., "Hydrogels in Drug Delivery: Progress and Challenges," Polymer, 49, 1993-2007(2008). https://doi.org/10.1016/j.polymer.2008.01.027
  2. Lian, Z. and Ye, L., "Synthesis and Properties of Carboxylated Poly(vinyl alcohol) Hydrogels for Wound Dressings," J. Polym. Res., 22, 1-11(2015). https://doi.org/10.1007/s10965-014-0642-x
  3. Lee, E. and Kim, B., "Smart Delivery System for Cosmetic Ingredients Using pH-sensitive Polymer Hydrogel Particles," Korean J. Chem. Eng., 28, 1347-1350(2011). https://doi.org/10.1007/s11814-010-0509-8
  4. Enas M. A., "Hydrogels: Methods of Preparation, Characterisation and Applications: A Review," J. Adv. Res., 6, 105-121(2015). https://doi.org/10.1016/j.jare.2013.07.006
  5. Bajpai, A., Shukla, S. K., Bhanu, S. and Kankane, S., "Responsive Polymers in Controlled Drug Delivery," Prog. Polym. Sci., 33, 1088-1118(2008). https://doi.org/10.1016/j.progpolymsci.2008.07.005
  6. Zhao, Q. S., Ji, Q. X., Xing, K., Li, X. Y., Liu, C. S. and Chen, X. G., "Preparation and Characteristics of Novel Porous Hydrogel Films Based on Chitosan and Glycerophosphate," Carbohydr. Polym., 76, 410-416(2009). https://doi.org/10.1016/j.carbpol.2008.11.020
  7. Allwyn, S. R. A., Rubila, R. J. S. and Ranganathan, T. V., "A Review on Pectin: Chemistry Due to General Properties of Pectin and its Pharmaceutical Uses," Sci. Rep., 1, 550-551(2012).
  8. Munarin, F., Petrini, P., Tanzi, M. C., Barbosa, M. A. and Granja, P. L., "Biofunctional Chemically Modified Pectin for Cell Delivery," Soft Matter, 8, 4731-4739(2012). https://doi.org/10.1039/c2sm07260b
  9. Ngouemazong, D. E., Jolie, R. P., Cardinaels, R., Fraeye, I., Van Loey, A., Moldenaers, P. and Hendrickx, M., "Stiffness of $Ca^{2+}$-pectin Gels: Combined Effects of Degree and Pattern of Methylesterification for Various $Ca^{2+}$ Concentrations," Carbohydr. Res., 348, 69-76(2012). https://doi.org/10.1016/j.carres.2011.11.011
  10. Munarin, F., Munarin, F., Guerreiro, S. G., Grellier, M. A., Tanzi, M. C., Barbosa, M. A., Petrini, P. and Granja, P. L., "Pectin-based Injectable Biomaterials for Bone Tissue Engineering," Biomacromolecules, 12, 568-577(2011). https://doi.org/10.1021/bm101110x
  11. Silva, C. M., Ribeiro, A. J., Figueiredo, I. V., Goncalves, A. R. and Veiga, F., "Alginate Microspheres Prepared by Internal Gelation: Development and Effect on Insulin Stability," Int. J. Pharm., 311, 1-10(2006). https://doi.org/10.1016/j.ijpharm.2005.10.050
  12. Jeong, H. H., Jin, S. H., Lee, B. J., Kim, T. and Lee, C. S., "Microfluidic Static Droplet Array for Analyzing Microbial Communication on a Population Gradient," Lab Chip, 15, 889-899(2015). https://doi.org/10.1039/C4LC01097C
  13. Jin S. H., Kim J., Jang S. C., Noh Y. M. and Lee C. S., "Stagnation of Droplet for Efficient Merging in Microfluidic System," Korean Chem. Eng. Res., 52, 106-112(2014). https://doi.org/10.9713/kcer.2014.52.1.106
  14. Wieduwild, R., Krishnan, S., Chwalek, K., Boden, A., Nowak, M., Drechsel, D., Werner, C. and Zhang, Y., "Noncovalent Hydrogel Beads as Microcarriers for Cell Culture," Angew. Chem. Int. Ed., 54, 3962-3966(2015). https://doi.org/10.1002/anie.201411400
  15. Tan, Y. C., Hettiarachchi, K., Siu, M., Pan, Y. R., Lee, A. P., "Controlled Microfluidic Encapsulation of Cells, Proteins, and Microbeads in Lipid Vesicles," J. Am. Chem. Soc., 128, 5656-5658(2006). https://doi.org/10.1021/ja056641h
  16. Orive, G., Hernandez, R. M., Gascon, A. R., Calafiore, R., Chang, T. M., De Vos, P., Hortelano, G., Hunkeler, D., Lacik, ShapiroI, A. J. and Pedraz J. L., "Cell Encapsulation: Promise and Progress," Nat. Med., 9, 104-107(2003). https://doi.org/10.1038/nm0103-104
  17. Vinogradov, S. V., Bronich, T. K. and Kabanov, A. V., "Nanosized Cationic Hydrogels for Drug Delivery: Preparation, Properties and Interactions with Cells," Adv. Drug Deliv., 54, 135-147(2002). https://doi.org/10.1016/S0169-409X(01)00245-9
  18. Sjostrom, S. L., Joensson, H. N. and Svahn, H. A., "Multiplex Analysis of Enzyme Kinetics and Inhibition by Droplet Microfluidics Using Picoinjectors," Lab Chip, 13, 1754-1761(2013). https://doi.org/10.1039/c3lc41398e
  19. Park, K. J., Lee, K. G., Seok, S., Choi, B. G., Lee, M. K., Park, T. J., Park, J. Y., Kim, D. H. and Lee, S. J., "Micropillar Arrays Enabling Single Microbial Cell Encapsulation in Hydrogels," Lab Chip, 14, 1873-1879(2014). https://doi.org/10.1039/c4lc00070f
  20. Chau, M., Abolhasani, M., Therien-Aubin, H., Li, Y., Wang, Y., Velasco, D., Tumarkin, E., Ramachandran, A. and Kumacheva, E., "Microfluidic Generation of Composite Biopolymer Microgels with Tunable Compositions and Mechanical Properties," Biomacromolecules, 15, 2419-2425(2014). https://doi.org/10.1021/bm5002813
  21. Marquis, M. l., Davy, J., Fang, A. and Renard, D., "Microfluidics-Assisted Diffusion Self-Assembly: Toward the Control of the Shape and Size of Pectin Hydrogel Microparticles," Biomacromolecules, 15, 1568-1578(2014). https://doi.org/10.1021/bm401596m
  22. Tan, W. H. and Takeuchi, S., "Monodisperse Alginate Hydrogel Microbeads for Cell Encapsulation," Adv. Mater., 19, 2696-2701 (2007). https://doi.org/10.1002/adma.200700433
  23. Chan, L., Lee, H. and Heng, P., "Production of Alginate Microspheres by Internal Gelation Using an Emulsification Method," Int. J. Pharm., 242, 259-262(2002). https://doi.org/10.1016/S0378-5173(02)00170-9
  24. Lin, Y. S., Yang, C. H., Hsu, Y. Y. and Hsieh, C. L., "Microfluidic Synthesis of Tail-shaped Alginate Microparticles Using Slow Sedimentation," Electrophoresis, 34, 425-431(2013). https://doi.org/10.1002/elps.201200282
  25. Mele, E., Fragouli, D., Ruffilli, R., De Gregorio, G. L., Cingolani, R. and Athanassiou, A., "Complex Architectures Formed by Alginate Drops Floating on Liquid Surfaces," Soft Matter, 9, 6338-6343(2013). https://doi.org/10.1039/c3sm27847f
  26. Hu, Y., Wang, Q., Wang, J., Zhu, J., Wang, H. and Yang, Y., "Shape Controllable Microgel Particles Prepared by Microfluidic Combining External Ionic Crosslinking," Biomicrofluidics, 6, 026502-026509(2012). https://doi.org/10.1063/1.4720396
  27. Song, Y. and Lee, C. S., "In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions," Korean Chem. Eng. Res., 52, 632-637(2014). https://doi.org/10.9713/kcer.2014.52.5.632
  28. Bremond, N., Thiam, A. R. and Bibette, J., "Decompressing Emulsion Droplets Favors Coalescence," Phys. Rev. Lett., 100, 024501-024504(2008). https://doi.org/10.1103/PhysRevLett.100.024501
  29. Liu, K., Ding, H., Chen, Y. and Zhao, X. Z., "Droplet-based Synthetic Method Using Microflow Focusing and Droplet Fusion," Microfluid Nanofluidics, 3, 239-243(2007). https://doi.org/10.1007/s10404-006-0121-8
  30. Hu, Y., Azadi, G. and Ardekani, A. M., "Microfluidic Fabrication of Shape-tunable Alginate Microgels: Effect of Size and Impact Velocity," Carbohydr. Polym., 120, 38-45(2015). https://doi.org/10.1016/j.carbpol.2014.11.053
  31. Choi, C. H., Jung, J. H., Hwang, T. S. and Lee, C. S., "In situ Microfluidic Synthesis of Monodisperse PEG Microspheres," Macromol. Res., 17, 163-167(2009). https://doi.org/10.1007/BF03218673
  32. Zhang, S., "Hydrogels: Wet or Let Die," Nat. Mat., 3, 7-8(2004). https://doi.org/10.1038/nmat1047
  33. Thakur, B. R., Singh, R. K., Handa, A. K. and Rao, M. A., "Chemistry and Uses of Pectin-a Review," Critical Reviews in Food Science & Nutrition, 37, 47-73(1997). https://doi.org/10.1080/10408399709527767
  34. Agarwal, P., Zhao, S., Bielecki, P., Rao, W., Choi, J. K., Zhao, Y. and He, X., "One-step Microfluidic Generation of Pre-hatching Embryo-like Core-shell Microcapsules for Miniaturized 3D Culture of Pluripotent Stem Cells," Lab on a Chip, 13, 4525-4533 (2013). https://doi.org/10.1039/c3lc50678a

Cited by

  1. 미세유체 장치에서 부분젤화법을 이용한 단분산성 펙틴 하이드로젤 미세섬유의 제조 vol.23, pp.3, 2015, https://doi.org/10.7464/ksct.2017.23.3.270
  2. 주사기 바늘 기반의 미세유체 장치를 이용한 단분산성 PEGDA 입자의 제조 vol.57, pp.1, 2015, https://doi.org/10.9713/kcer.2019.57.1.58