DOI QR코드

DOI QR Code

Preparation of Hard Coating Films with High Refractive Index from TiO2-SnO2 Nanoparticles

TiO2-SnO2 나노입자로 부터 고굴절 하드코팅 도막의 제조

  • Ahn, Chi Yong (Department of Chemical and Biochemical Engineering, Konyang University) ;
  • Kim, Nam Woo (Department of Chemical and Biochemical Engineering, Konyang University) ;
  • Song, Ki Chang (Department of Chemical and Biochemical Engineering, Konyang University)
  • Received : 2015.09.30
  • Accepted : 2015.10.22
  • Published : 2015.12.01

Abstract

$TiO_2-SnO_2$ nanoparticles with an average diameter of 3~5 nm were synthesized by hydrolysis of titanium tetraisopropoxide (TTIP) and tin chloride to depress the photocatalytic activity of $TiO_2$ nanoparticles. Organic-inorganic hybrid coating solutions were prepared by reacting the $TiO_2-SnO_2$ nanoparticles with 3-glycidoxypropyl trimethoxysilane (GPTMS) by the sol-gel method. The hard coating films with high refractive index were obtained by curing thermally at $120^{\circ}C$ after spin-coating the coating solutions on the polycarbonate (PC) sheets. The coating films from $TiO_2-SnO_2$ nanoparticles showed an improved pencil hardness of 3H compared to 2H of the coating films from $TiO_2$ nanoparticles. Besides, the refractive index of the coating films from $TiO_2-SnO_2$ nanoparticles enhanced from 1.543 to 1.623 at 633 nm as the Sn/Ti molar ratio increased from 0 to 0.5.

$TiO_2$ 나노입자의 광촉매 반응을 억제하기 위해 평균 직경 3~5 nm의 $TiO_2-SnO_2$ 나노입자가 titanium tetraisopropoxide(TTIP)와 tin chloride의 가수분해 반응에 의해 합성되었다. 생성된 $TiO_2-SnO_2$ 나노입자를 졸-겔법에 의해 3-glycidoxypropyl trimethoxysilane(GPTMS)과 반응시킴에 의해 유-무기 혼성 코팅 용액이 제조되었다. 그 후 코팅 용액을 기재인 polycarbonate(PC) 시트 위에 스핀 코팅시키고, $120^{\circ}C$에서 열경화 시켜 고굴절률 하드코팅 도막이 제조되었다. $TiO_2-SnO_2$ 나노입자로부터의 코팅 도막은 $TiO_2$ 나노입자로부터 얻어진 코팅 도막의 2H에 비해 증가된 3H의 연필경도를 보였다. 또한 $TiO_2-SnO_2$ 나노입자로부터의 코팅 도막의 굴절률은 Sn/Ti 몰 비가 0에서 0.5로 증가함에 따라 633 nm 파장에서 1.543으로부터 1.623으로 향상되었다.

Keywords

References

  1. Yoshida, M. and Prasad, P. N., "Sol-Gel Processed $SiO_2/TiO_2$/poly(vinylpyrrolidone) Composite Materials for Optical Waveguides," Chem. Mater., 8, 235-241(1996). https://doi.org/10.1021/cm950331o
  2. Nakayama, N. and Hayashi, T., "Preparation and Characterization of $TiO_2$ and Polymer Nanocomposite Films with High Refractive Index," J. Appl. Polym. Sci., 105, 3662-3672(2007). https://doi.org/10.1002/app.26451
  3. Muller, P., Braune, B., Becker, C., Krug, H. and Schmidt, H., "Fabrication of Monolithic Refractive Optical Lenses with Organic-Inorganic Nanocomposites: Relations Between Composition and Mechanical and Optical Properties," SPIE, 3136, 462-469(1997).
  4. Nakayama, N. and Hayashi, T., "Preparation of $TiO_2$ Nanoparticles Surface-Modified by Both Carboxylic Acid and Amine: Dispersibility and Stabilization in Organic Solvents," Colloids and Surfaces A, 317, 543-550(2008). https://doi.org/10.1016/j.colsurfa.2007.11.036
  5. Choi, J. J., Kim, N. U., Ahn, C. Y. and Song, K. C., "Preparation of Hard Coating Films with High Refractive Index Using Organic-Inorganic Hybrid Coating Solutions," Korean Chem. Eng. Res., 52(3), 388-394(2014). https://doi.org/10.9713/kcer.2014.52.3.388
  6. You, Y. S., Chung, K. H., Kim, Y. M., Kim, J. H. and Seo, G., "Deactivation and Regeneration of Titania catalyst Supported on Glass Fiber in the Photocatalytic Degradation of Toluene," Korean J. Chem. Eng., 20(1), 58-64(2003). https://doi.org/10.1007/BF02697185
  7. Nakayama, N. and Hayashi, T., "Preparation and Characterization of $TiO_2-ZrO_2$ and Thiol-Acrylate Resin Nanocomposites with High Refractive Index via UV-Induced Crosslinking Polymerization," Composites: Part A, 38, 1996-2004(2007). https://doi.org/10.1016/j.compositesa.2007.05.005
  8. Rahal, A., Benhaoua, A., Jlassi, M. and Benhaoua, B., "Structural, Optical and Electrical Properties Studies of Ultrasonically Deposited Tion Oxide($SnO_2$) Thin Films with Different Substrate Temperatures," Superlattices and Microstructures, 86, 403-411(2015). https://doi.org/10.1016/j.spmi.2015.08.003
  9. ASTM D3359, "Standard Test Methods for Measuring Adhesion by Tape Test," ASTM International, 927-929(1997).
  10. Song, K. C. and Pratsinis, S. E., "The Effect of Alcohol Solvents on the Porosity and Phase Composition of Titania," J. Colloid Interface Sci., 231, 289-298(2000). https://doi.org/10.1006/jcis.2000.7147
  11. Jung, M. and Kwak, Y., "Photoactivity of $SnO_2$-Doped $TiO_2$ Powder Sensitized with Quinacridone," J. Korean Ind. Eng. Chem., 18(6), 650-653(2007).
  12. Liu, Y., Lu, C., Li, M., Zhang, L. and Yang, B., "High Refractive Index Organic-Inorganic Hybrid Coatings with $TiO_2$ Nanocrystals," Colloids and Surfaces A, 328, 67-72(2008). https://doi.org/10.1016/j.colsurfa.2008.06.026

Cited by

  1. RESEARCH PROGRESS ON TITANIUM-CONTAINING ORGANIC–INORGANIC HYBRID PROTECTIVE COATINGS pp.1793-6667, 2019, https://doi.org/10.1142/S0218625X19300028
  2. 투명 유-무기 하이브리드 하드코팅 필름 제조 및 SiO2 또는 ZrO2함량에 따른 필름의 물성 vol.27, pp.1, 2015, https://doi.org/10.3740/mrsk.2017.27.1.12