DOI QR코드

DOI QR Code

새로운 가교제를 적용한 촉매를 이용한 글루코스 센서의 성능향상 연구

A Study on Performance Improvement of Glucose Sensor Adopting a Catalyst Using New Cross Liker

  • 정용진 (서울과학기술대학교 에너지환경대학원) ;
  • 권용재 (서울과학기술대학교 에너지환경대학원)
  • Chung, Yongjin (Graduate School of Energy and Environment, Seoul National University of Science and Technology) ;
  • Kwon, Yongchai (Graduate School of Energy and Environment, Seoul National University of Science and Technology)
  • 투고 : 2015.08.06
  • 심사 : 2015.09.17
  • 발행 : 2015.12.01

초록

본 논문에서는 글루코스산화제, polyethyleneimine(PEI) 및 탄소나노튜브 간 물리적 흡착으로 제조된 촉매(GOx/PEI/CNT)에 새로운 가교제인 terephthalaldehyde(TPA)를 첨가하여 민감도 및 안정성이 개선된 글루코스 센서 촉매를 합성하여, 감지능 및 안정성 개선효과를 확인하였다. 새로운 가교제를 포함한 바이오 촉매는, 글루코스산화제 및 polyethyeleneimine의 관능기와 TPA의 관능기간 알돌축합반응에 의해 생성되었고, 이를 통해 생성된 새로운 전자전달구조는 글루코스의 산화반응을 촉진시켰다. 이러한 촉매활성은 전기화학적 평가를 통해 정량적으로 평가하였으며 그 결과 $41.1{\mu}Acm^{-2}mM^{-1}$의 글루코스 민감도를 얻을 수 있었다. 또한 가교제와 글루코스산화제 및 polyethyeleneimine 간의 화학반응의 형성에 의해 글루코스 산화제의 외부 손실을 최소화 하여, 센서 안정성 향상에도 크게 기여하였다. 안정성 평가를 한 결과, 3주간의 주기적인 촉매 활성 측정후에 94.6% 활성이 유지됨을 확인하였다.

In this study, we synthesized a new biocatalyst consisting of glucose oxidase (GOx), polyethyleneimine (PEI) and carbon nanotube (CNT) with addition of terephthalaldehyde (TPA) (TPA/GOx/PEI/CNT) for fabrication of glucose sensor that shows improved sensing ability and stability compared with that using other biocatalysts. Main bonding of the new TPA/GOx/PEI/CNT catalyst is formed by Aldol condensation reaction of functional end groups between GOx/PEI and TPA. Such formed bonding structure promotes oxidation reaction of glucose. Catalytic activity of TPA/GOx/PEI/CNT is evaluated quantitatively by electrochemical measurements. As a result of that, large sensitivity value of $41{\mu}Acm^{-2}mM^{-1}$ is gained. Regarding biosensor stability of TPA/GOx/PEI/CNT catalyst, covalent bonding formed between GOx/PEI and TPA prevents GOx molecules from becoming leaching-out and contributes improvement in biosensor stability. With estimation of the biosensor stability, it is found that the TPA/GOx/PEI/CNT catalyst keeps 94.6% of its initial activity even after three weeks.

키워드

참고문헌

  1. International Diabetes Federation, "Diabetes Atlas. 2nd ed.," International Diabetes Federation, 17-71(2003).
  2. Yun, K. E., Park, M. J. and Park, H. S., "Lack of Management of Cardiovascular Risk Factors in Type 2 Diabetic Patients," Int. J. Clin. Pract., 61(1), 39-44(2007). https://doi.org/10.1111/j.1742-1241.2006.01154.x
  3. Bankar, S. B., Bule, M. V., Singhal, R. S. and Ananthanarayan, L., "Glucose Oxidase-an Over View," Biotechnol. Adv., 27, 489-501(2009). https://doi.org/10.1016/j.biotechadv.2009.04.003
  4. Rad, A. S., Ardjmand, M., Jahanshahi, M. and Safekordi, A. A., "Self-assembly Electrode Based on Silver Nanoparticle Toward Electrogenerated Chemiluminescence Analysis of Glucose," Korean J. Chem. Eng, 29, 1063-1068(2012). https://doi.org/10.1007/s11814-011-0280-5
  5. Park, H. G., Hwang, U. and Kim, I. H., "Biochemical Engineering, Energy/Environment: Purification Study of Glucose Oxidase from Aspergillus Niger," Korean Chem. Eng. Res., 39, 512-512(2001).
  6. Kim, H., Jeong, N. J., Lee, S. J. and Song, K. S., "Electrochemical Deposition of Pt Nanoparticles on CNTs for Fuel Cell Electrode," Korean J. Chem. Eng., 25, 443-445(2008). https://doi.org/10.1007/s11814-008-0075-5
  7. Yu H. R., Kim J. G., Im, J. S., Bae T. S. and Lee Y. S., "Effects of Oxyfluorination on a Multi-walled Carbon Nanotube Electrode for a High-performance Glucose Sensor," J. Ind. Eng. Chem., 18, 674-679(2012). https://doi.org/10.1016/j.jiec.2011.11.064
  8. Sheldon, R. A., "Characteristic Features and Biotechnological Applications of Cross-linked Enzyme Aggregates (CLEAs)," Appl. Microbiol. Biotechnol., 92, 467-477(2011). https://doi.org/10.1007/s00253-011-3554-2
  9. Chung, Y., Hyun, K. H. and Kwon, Y., "Fabrication of Biofuel Cell Improved by $\pi$-conjugated Electron Pathway Effect Induced from a new Enzyme Catalyst Employing Terephtalal Dehyde," Nanoscale. Accepted.
  10. Hyun, K. H., Han, S. W., Koh, W.-G. and Kwon, Y., "Fabrication of Biofuel Cell Containing Enzyme Catalyst Immobilized by Layer-by-layer Method," J. Power Sources., 286, 197-203(2015). https://doi.org/10.1016/j.jpowsour.2015.03.136
  11. Ramanavicius, A., Kausaite, A. and Ramanaviciene, A., "Biofuel Cell Based on Direct Bioelectrocatalysis," Biosens. Bioelectron., 20, 1962-1967(2005). https://doi.org/10.1016/j.bios.2004.08.032
  12. Kaczmarczyk, B., FTIR Study of Conjugation in Selected Aromatic Polyazomethines," J. Mol. Struct., 1048, 179-184(2013). https://doi.org/10.1016/j.molstruc.2013.05.036
  13. Kurihara, T., Oba, N., Mori, Y., Tomaru, S. and Kaino, T., "New Symmetrical Pi-conjugated Molecules Having Large Third-order Optical Nonlinearities," J. Appl. Phys., 70, 17-19(1991). https://doi.org/10.1063/1.350306
  14. Dobrikov, G., "Photoluminescent Effects in Conjugated Polymer Layers," Vacuum, 76, 227-230(2004). https://doi.org/10.1016/j.vacuum.2004.07.073
  15. Xiao, Y., Patolsky, F., Katz, E., Hainfeld, J. F. and Willner, I., "Plugging Into Enzymes': Nanowiring of Redox Enzymes by a Gold Nanoparticle," Science, 299, 1877-1881(2003). https://doi.org/10.1126/science.1080664
  16. Zhang, S., Wang, N., Yu, H., Niu, Y. and Sun, C., "Covalent Attachment of Glucose Oxidase to an Au Electrode Modified with Gold Nanoparticles for Use as Glucose Biosensor," Bioelectrochemistry, 67, 15-22(2005). https://doi.org/10.1016/j.bioelechem.2004.12.002
  17. Yan, X. B., Chenn, X. J., Tay, B. K. and Khor, K. A., "Transparent and Flexible Glucose Biosensor Via Layer-by-layer Assembly of Multi-wall Carbon Nanotubes and Glucose Oxidase," Electochem Commun, 9, 1269-1275(2007). https://doi.org/10.1016/j.elecom.2006.12.022
  18. Liu, Q., Lu, X. B., Li, J., Yao, X. and Li, J. H., "Direct Electrochemistry of Glucose Oxidase and Electrochemical Biosensing of Glucose on Quantum Dots/carbon Nanotubes Electrodes," Biosens Bioelectron, 22, 3203-3209(2007). https://doi.org/10.1016/j.bios.2007.02.013
  19. Hyun, K., Han, S. W., Koh, W.-G. and Kwon, Y., "Direct Electrochemistry of Glucose Oxidase Immobilized on Carbon Nanotube for Improving Glucose Sensing," International Journal of Hydrogen Energy, 40, 2199-2206(2015). https://doi.org/10.1016/j.ijhydene.2014.12.019
  20. Cai, C. and Chen, J., "Direct Electron Transfer of Glucose Oxidase Promoted by Carbon Nanotubes," Analytical biochemistry, 332, 75-83(2004). https://doi.org/10.1016/j.ab.2004.05.057
  21. Bahulekar, R., Ayyangar, N. R. and Ponrathnam, S., "Polyethyleneimine in Immobilization of Biocatalysts," Enzyme Microb. Technol., 13, 858-868(1991). https://doi.org/10.1016/0141-0229(91)90101-F
  22. Xiong, M. P., "Poly(aspartate-g-PEI800), a Polyethylenimine Analogue of Low Toxicity and Gh Transfection Efficiency for Gene Delivery," Biomaterials, 28, 4889-4900(2007). https://doi.org/10.1016/j.biomaterials.2007.07.043

피인용 문헌

  1. Highly sensitive glucose biosensor using new glucose oxidase based biocatalyst vol.34, pp.11, 2017, https://doi.org/10.1007/s11814-017-0224-9
  2. Effects of the gold nanoparticles including different thiol functional groups on the performances of glucose-oxidase-based glucose sensing devices pp.1975-7220, 2018, https://doi.org/10.1007/s11814-018-0163-0
  3. 글루코스 기반 바이오연료전지를 위한 다양한 분자량의 폴리에틸렌이민을 이용한 글루코스 산화효소 고정화 vol.54, pp.5, 2016, https://doi.org/10.9713/kcer.2016.54.5.693
  4. 시료용액의 특성에 따른 고정화된 단일벽 탄소나노튜브의 전기적 거동 vol.55, pp.1, 2017, https://doi.org/10.9713/kcer.2017.55.1.115
  5. 백금 나노입자가 분산된 3차원 산화구리 나노구조체 기반의 글루코스 검출용 비효소적 전기화학 센서 개발 vol.56, pp.5, 2015, https://doi.org/10.9713/kcer.2018.56.5.705