DOI QR코드

DOI QR Code

Effects of Reinforced Pseudo-Plastic Backfill on the Behavior of Ground around Cavity Developed due to Sewer Leakage

하수관 누수에 의해 발생되는 공동 주변 지반의 거동에 대한 가소성유동화토의 보강효과

  • Oh, Dongwook (Department of Civil Engineering, Seoul National University of Science and Technology) ;
  • Kong, Sukmin (Department of Civil Engineering, Seoul National University of Science and Technology) ;
  • Lee, Daeyoung (Geotechnical Engineering Research Division, Korea Insititute of Civil Engineering and Building Technology (KICT)) ;
  • Yoo, Yongseon (Chemius Korea Co., Ltd.) ;
  • Lee, Yongjoo (Department of Civil Engineering, Seoul National University of Science and Technology)
  • Received : 2015.09.01
  • Accepted : 2015.11.16
  • Published : 2015.12.01

Abstract

Developed ground cavity due to leakage of decrepit old sewer pipe causes ground surface settlement and brittle fracture of pavement. Recently, for 5 years, frequency of occurrence of ground subsidence phenomenon tends to increase rapidly and/or steadily. It is difficult to investigate ground surface settlement and/or subsidence in urban area because most ground surfaces are covered with asphalt or concrete pavement. In this research, therefore, ground surface settlement, influence zone and settlement of sewer pipe were analyzed using finite element method. Not only reinforced effect of pseudo-plastic backfill that is applied to prevent ground surface settlement or subsidence spot, was compared and analyzed using numerical analysis program, but also direct shear test was carried out to determine strength parameters of pseudo-plastic backfill.

노후된 하수관의 누수로 인해 발달된 지하공동은 지표침하를 발생시키고 그로 인한 포장재의 취성파괴를 유발시킨다. 이러한 도심지 지반함몰 현상은 최근 5년간 그 빈도수가 꾸준히 증가하고 있는 추세이다. 도심지 지표면은 대부분 아스팔트 또는 콘크리트로 포장이 되어 있어 지하공동의 발생에 따른 지반침하 또는 함몰을 예측하기 어려운 실정이다. 따라서 이 연구는 파손된 하수관의 누수로 인해 발생되는 지하공동의 진행에 따른 지표침하량, 지표면의 영향범위 등 지반거동 및 하수관의 침하를 유한요소해석을 이용하여 분석하였다. 또한 침하 또는 함몰이 발생된 지반을 보강하기 위한 보강재로 가소성유동화토를 사용하였을 때의 보강효과를 수치해석 프로그램을 이용하여 비교 분석하였으며 강도정수 산정을 위해 가소성유동화토의 직접전단시험을 수행하였다.

Keywords

References

  1. 강인식, 강기헌, 김나한 (2015), 모래지층 송파․구로, 하구관 낡은 종로, 도로함몰 집중, 중앙일보, pp. 10.
  2. 이준희 (2015), 싱크홀 부르는 '노후하수관' ...예산부족이 '화' 키워, 엔지니어링데일리, http://www.engdaily.com/news/articleView. html?idxno=4344.
  3. Atkinson, J. H. and Mair, R. J. (1981), Soil mechanics aspects of soft ground tunnelling, Ground Engineering, July, pp. 20-26.
  4. Kuwano, R., Sato, M. and Sera, R. (2010), 地盤陥没未然防止 のための地盤内空洞.ゆるみの探知に向けた基礎的検討, 地盤工学ジャーナル, Vol. 5, No. 2, pp. 219-229.
  5. Lee, K. H. and Song, C. S. (2006), Performance evaluation of underground pipe with in-situ recycled controlled low strength materials, International Journal of Highway Engineering, Vol. 8, No. 2, pp. 1-12 (in Korean).
  6. Nam, J. W., Byun, Y. S. and Chun, B. S. (2013), Evaluation of the applicability of CLSM by numerical method and field test, Journal of the Korean Geo-Environmental Society, Vol. 14, No. 7, pp. 5-12 (in Korean). https://doi.org/10.14481/jkges.2013.14.12.005
  7. Plaxis 2D AE (2012), Reference manual, Plaxis bv, pp. 1-372.
  8. Thiansky, A. B. (1999), Sinkholes, West-Central Florida, Land subsidence in the United States, U.S. Geological Survey Circular 1182, pp. 121-140.

Cited by

  1. Stability assessment of roadbed affected by ground subsidence adjacent to urban railways vol.18, pp.8, 2018, https://doi.org/10.5194/nhess-18-2261-2018
  2. Analysis of ground relaxation zone by combining various near-surface geophysical data (GPR, MASW, Electrical resistivity) after underground excavation vol.55, pp.4, 2015, https://doi.org/10.14770/jgsk.2019.55.4.481