HYPERSTABILITY OF THE GENERAL LINEAR FUNCTIONAL EQUATION

MAGDALENA PISZCZEK

ABSTRACT. We give some results on hyperstability for the general linear equation. Namely, we show that a function satisfying the linear equation approximately (in some sense) must be actually the solution of it.

1. Introduction

Let X, Y be normed spaces over fields F, K, respectively. A function $f: X \to Y$ is linear provided it satisfies the functional equation

\[f(ax + by) = Af(x) + Bf(y), \quad x, y \in X, \]

where $a, b \in F \setminus \{0\}$, $A, B \in K$. We see that for $a = b = A = B = 1$ in (1) we get the Cauchy equation while the Jensen equation corresponds to $a = b = A = B = \frac{1}{2}$. The general linear equation has been studied by many authors, in particular the results of the stability can be found in [5], [6], [8], [9], [10], [13], [14].

We present some hyperstability results for the equation (1). Namely, we show that, for some natural particular forms of φ, the functional equation (1) is φ-hyperstable in the class of functions $f: X \to Y$, i.e., each $f: X \to Y$ satisfying the inequality

\[\|f(ax + by) - Af(x) - Bf(y)\| \leq \varphi(x, y), \quad x, y \in X, \]

must be linear. In this way we expect to stimulate somewhat the further research of the issue of hyperstability, which seems to be a very promising subject to study within the theory of Hyers-Ulam stability.

The hyperstability results concerning the Cauchy equation can be found in [2], the general linear in [12] with $\varphi(x, y) = \|x\|^p + \|y\|^p$, where $p < 0$. The Jensen equation was studied in [1] and there were received some hyperstability results for $\varphi(x, y) = c\|x\|^p\|y\|^q$, where $c \geq 0$, $p, q \in \mathbb{R}$, $p + q \notin \{0, 1\}$.
The stability of the Cauchy equation involving a product of powers of norms was introduced by J. M. Rassias in [15], [16] and it is sometimes called Ulam-Găvrută-Rassias stability. For more information about Ulam-Găvrută-Rassias stability we refer to [7], [11], [17], [18], [19].

One of the method of the proof is based on a fixed point result that can be derived from [3] (Theorem 1). To present it we need the following three hypothesis:

(H1) X is a nonempty set, Y is a Banach space, $f_1, \ldots, f_k : X \to X$ and $L_1, \ldots, L_k : X \to \mathbb{R}_+$ are given.

(H2) $T : Y^X \to Y^X$ is an operator satisfying the inequality

$$\|T\xi(x) - T\mu(x)\| \leq \sum_{i=1}^{k} L_i(x)\|\xi(f_i(x)) - \mu(f_i(x))\|, \quad \xi, \mu \in Y^X, \ x \in X.$$

(H3) $\Lambda : \mathbb{R}_+^X \to \mathbb{R}_+^X$ is defined by

$$\Lambda\delta(x) := \sum_{i=1}^{k} L_i(x)\delta(f_i(x)), \quad \delta \in \mathbb{R}_+^X, \ x \in X.$$

Now we are in a position to present the above mentioned fixed point theorem.

Theorem 1.1. Let hypotheses (H1)–(H3) be valid and functions $\varepsilon : X \to \mathbb{R}_+$ and $\varphi : X \to Y$ fulfill the following two conditions

$$\|T\varphi(x) - \varphi(x)\| \leq \varepsilon(x), \quad x \in X,$$

$$\varepsilon^*(x) := \sum_{n=0}^{\infty} \Lambda^n\varepsilon(x) < \infty, \quad x \in X.$$

Then there exists a unique fixed point ψ of T with

$$\|\varphi(x) - \psi(x)\| \leq \varepsilon^*(x), \quad x \in X.$$

Moreover,

$$\psi(x) := \lim_{n \to \infty} T^n\varphi(x), \quad x \in X.$$

The next theorem shows that a linear function on $X \setminus \{0\}$ is linear on the whole X.

Theorem 1.2. Let X,Y be normed spaces over \mathbb{F}, \mathbb{K}, respectively, $a,b \in \mathbb{F}\setminus\{0\}$, $A,B \in \mathbb{K}$. If a function $f : X \to Y$ satisfies

(2) \hspace{1cm} f(ax + by) = Af(x) + Bf(y), \quad x,y \in X \setminus \{0\},

then there exist an additive function $g : X \to Y$ satisfying conditions

(3) \hspace{1cm} g(bx) = Bg(x) \text{ and } g(ax) = Ag(x), \quad x \in X

and a vector $\beta \in Y$ with

(4) \hspace{1cm} \beta = (A + B)\beta
such that
\(f(x) = g(x) + \beta, \quad x \in X. \)

Conversely, if a function \(f: X \to Y \) has the form (5) with some \(\beta \in Y \), an
additive \(g: X \to Y \) such that (3) and (4) hold, then it satisfies the equation
(1) (for all \(x, y \in X \)).

Proof. Assume that \(f \) fulfills (2). Replacing \(x \) by \(bx \) and \(y \) by \(-ax \) in (2) we
get
\[f(0) = Af(bx) + Bf(-ax), \quad x \in X \setminus \{0\}. \]

Next with \(x \) replaced by \(bx \) and \(y \) by \(ax \) in (2) we have
\[f(2abx) = Af(bx) + Bf(ax), \quad x \in X \setminus \{0\}. \]

Let \(f = f_e + f_o \), where \(f_e, f_o \) denote the even and the odd part of \(f \), respectively.
It is obvious that \(f_e, f_o \) satisfy (2), (6) and (7).

First we show that \(f_o \) is additive. According to (6) and (7) for the odd part
of \(f \) we have
\[Af_o(bx) = Bf_o(ax), \quad x \in X \setminus \{0\}. \]

Thus
\[f_o(x) = 2Bf_o\left(\frac{x}{2a}\right) = 2Af_o\left(\frac{x}{2a}\right), \quad x \in X. \]

By (8) and (2)
\[f_o(x) + f_o(y) = 2Af_o\left(\frac{x}{2a}\right) + 2Bf_o\left(\frac{y}{2b}\right) = 2f_o\left(\frac{a x}{2a} + b \frac{y}{2b}\right) \]
\[= 2f_o\left(\frac{x+y}{2}\right), \quad x, y \in X \setminus \{0\}. \]

Fix \(z \in X \setminus \{0\} \) and write \(X_z := \{pz : p > 0\} \). Then \(X_z \) is a convex set, there
exist an additive map \(g_z: X_z \to Y \) and a constant \(\beta_z \in Y \) such that
\[f_o(x) = g_z(x) + \beta_z, \quad x \in X_z. \]

We observe that
\[g_z(pz) + \beta_z = f_o(pz) = f_o\left(\frac{3pz - pz}{2}\right) = \frac{f_o(3pz) - f_o(pz)}{2} \]
\[= \frac{g_z(3pz) - g_z(pz)}{2} = g_z(pz), \quad p > 0, \]

which means that \(\beta_z = 0 \). Hence
\[f_o\left(\frac{1}{2}z\right) = g_z\left(\frac{1}{2}z\right) = \frac{1}{2}g_z(z) = \frac{1}{2}f_o(z). \]

Therefore with (9) we obtain
\[f_o\left(\frac{x+y}{2}\right) = \frac{f_o(x) + f_o(y)}{2}, \quad x, y \in X. \]
and as \(f_o(0) = 0 \), \(f_o \) is additive. Using additivity of \(f_o \) and (8) we obtain
\[
f_o(bx) = 2Bf_o\left(\frac{x}{2}\right) = Bf_o(x), \quad x \in X
\]
and
\[
f_o(ax) = 2Af_o\left(\frac{x}{2}\right) = Af_o(x), \quad x \in X,
\]
which means that (3) holds with \(g = f_o \). Using (6) and (7) for the even part of \(f \) we obtain
\[
f_e(0) = f_e(2abx), \quad x \in X \setminus \{0\},
\]
which means that \(f_e \) is a constant function and (4) holds with \(\beta := f_e(x) \).

For the proof of the converse, assume that a function \(f : X \to Y \) has the form (5) with some \(\beta \in Y \), an additive \(g : X \to Y \) such that (3) and (4) hold. Then for all \(x, y \in X \)
\[
f(ax + by) = g(ax + by) + \beta = g(ax) + g(by) + \beta
\]
\[
= Ag(x) + Bg(y) + (A + B)\beta
\]
\[
= Af(x) + Bf(y),
\]
which finishes the proof. \(\square \)

2. Hyperstability results

Theorem 2.1. Let \(X, Y \) be normed spaces over \(\mathbb{F}, \mathbb{K} \), respectively, \(a, b \in \mathbb{F} \setminus \{0\}, A, B \in \mathbb{K} \setminus \{0\}, c \geq 0, p, q \in \mathbb{R}, p + q < 0 \) and \(f : X \to Y \) satisfies
\[
\|f(ax + by) - Af(x) - Bf(y)\| \leq c\|x\|^{p}\|y\|^{q}, \quad x, y \in X \setminus \{0\}.
\]
Then \(f \) is linear.

Proof. First we notice that without loss of generality we can assume that \(Y \) is a Banach space, because otherwise we can replace it by its completion.

Since \(p + q < 0 \), one of \(p, q \) must be negative. Assume that \(q < 0 \). We observe that there exists \(m_0 \in \mathbb{N} \) such that
\[
\left|\frac{1}{2}\right| |a + bm|^{p+q} + \frac{|B|}{2}m^{p+q} < 1 \quad \text{for } m \geq m_0.
\]
Fix \(m \geq m_0 \) and replace \(y \) by \(mx \) in (10). Thus
\[
\|f(ax + bmx) - Af(x) - Bf(mx)\| \leq c\|x\|^{p}\|mx\|^{q}, \quad x \in X \setminus \{0\}
\]
and
\[
\left\|\frac{1}{A}f((a + bm)x) - \frac{B}{A}f(mx) - f(x)\right\| \leq \frac{c}{|A|}m^{q}\|x\|^{p+q}, \quad x \in X \setminus \{0\}.
\]
Write
\[
T\xi(x) := \frac{1}{A}\xi((a + bm)x) - \frac{B}{A}\xi(mx),
\]
\[
\varepsilon(x) := \frac{c}{|A|}m^{q}\|x\|^{p+q}, \quad x \in X \setminus \{0\},
\]
then (12) takes the form
\[\|Tf(x) - f(x)\| \leq \varepsilon(x), \quad x \in X \setminus \{0\}. \]
Define
\[\Lambda \varepsilon(x) := \frac{1}{A} |\eta((a + bm)x) + \frac{B}{A} |\eta(mx)|, \quad x \in X \setminus \{0\}. \]
Then it is easily seen that \(\Lambda \) has the form described in (H3) with \(k = 2 \) and \(f_1(x) = (a + bm)x, f_2(x) = mx, L_1(x) = \frac{1}{|A|}, L_2(x) = |\frac{B}{A}| \) for \(x \in X \setminus \{0\} \).
Moreover, for every \(\xi, \mu \in Y^{X \setminus \{0\}}, x \in X \setminus \{0\} \)
\[\|T\xi(x) - T\mu(x)\| \]
\[= \left\| \frac{1}{A} \xi((a + bm)x) - \frac{B}{A} \xi(mx) - \frac{1}{A} \mu((a + bm)x) + \frac{B}{A} \mu(mx) \right\| \]
\[\leq \frac{1}{A} \|\xi - \mu\|((a + bm)x) + \frac{B}{A} \|\xi - \mu\| \]
\[= \sum_{i=1}^{2} L_i(x)\|\xi - \mu\|(f_i(x)), \]
so (H2) is valid.
By (11) we have
\[\varepsilon^*(x) := \sum_{n=0}^{\infty} \Lambda^n \varepsilon(x) \]
\[= \sum_{n=0}^{\infty} \frac{\varepsilon}{|A|} \frac{m^q}{n!} \left(\frac{1}{A} |a + bm|^{p+q} + \frac{B}{A} |m^{p+q}| \right)^n \|x\|^{p+q} \]
\[= \frac{\varepsilon}{|A|} \frac{m^q}{n!} \|x\|^{p+q} \left(1 - |\frac{1}{A}| |a + bm|^{p+q} - |\frac{B}{A}| m^{p+q} \right), \quad x \in X \setminus \{0\}. \]
Hence, according to Theorem 1.1 there exists a unique solution \(F: X \setminus \{0\} \rightarrow Y \) of the equation
\[F(x) = \frac{1}{A} F((a + bm)x) - \frac{B}{A} F(mx), \quad x \in X \setminus \{0\} \]
such that
\[\|f(x) - F(x)\| \leq \frac{\varepsilon}{|A|} \frac{m^q}{n!} \|x\|^{p+q} \left(1 - |\frac{1}{A}| |a + bm|^{p+q} - |\frac{B}{A}| m^{p+q} \right), \quad x \in X \setminus \{0\}. \]
Moreover,
\[F(x) := \lim_{n \rightarrow \infty} (T^n f)(x), \quad x \in X \setminus \{0\}. \]
We show that
\[\|T^n f(ax + by) - AT^n f(x) - BT^n f(y)\| \]
\[\leq c \left(\frac{1}{A} |a + bm|^{p+q} + \frac{B}{A} |m^{p+q}| \right)^n \|x\|^{p+q} \|y\|^{p+q}, \quad x, y \in X \setminus \{0\} \]
Theorem 2.2. Let
\[(10) \quad \{ \]
We present the proof only when
\[n \to \infty \]
Thus, by induction we have shown that (13) holds for every
\[n \in \mathbb{N}_0. \]
If \(n = 0 \), then (13) is simply (10). So, take \(r \in \mathbb{N}_0 \) and suppose that (13) holds for \(n = r \). Then
\[
\begin{align*}
\|T^{r+1}f(ax + by) - AT^{r+1}f(x) - BT^{r+1}f(y)\| \\
&= \left\| \frac{1}{A}T^rf((a + bm)(ax + by)) - B \frac{1}{A}T^rf(m(ax + by)) \\
&\quad - B \frac{1}{A}T^rf((a + bm)x) + B \frac{1}{A}T^rf(mx) \\
&\quad - B \frac{1}{A}T^rf((a + bm)y) + B \frac{1}{A}T^rf(my) \right\| \\
&\leq c \left(\frac{1}{A} \|a + bm\|^{p+q} + \frac{B}{A} \|m\|^{p+q} \right)^{r+1} \frac{1}{A} \|a + bm\|\|x\|\|y\|^{q} \\
&\leq c \left(\frac{1}{A} \|a + bm\|^{p+q} + \frac{B}{A} \|m\|^{p+q} \right)^{r+1} \|x\|\|y\|^{q}, \quad x, y \in X \setminus \{0\}.
\end{align*}
\]
Thus, by induction we have shown that (13) holds for every \(n \in \mathbb{N}_0. \)

Letting \(n \to \infty \) in (13), we obtain that
\[F(ax + by) = AF(x) + BF(y), \quad x, y \in X \setminus \{0\}. \]
In this way, with Theorem 1.2, for every \(m \geq m_0 \) there exists a function \(F \) satisfying the linear equation (1) such that
\[
\|f(x) - F(x)\| \leq \frac{c}{A}m^q\|x\|^{p+q}, \quad x \in X \setminus \{0\}.
\]
It follows, with \(m \to \infty \), that \(F \) is linear.

In similar way we can prove the following theorem.

Theorem 2.2. Let \(X, Y \) be normed spaces over \(F, K \), respectively, \(a, b \in F \setminus \{0\}, A, B \in K \setminus \{0\}, c \geq 0, p, q \in \mathbb{R}, p + q > 0 \) and \(f: X \to Y \) satisfies (10). If \(q > 0 \) and \(|a|^{p+q} \neq |A| \), or \(p > 0 \) and \(|b|^{p+q} \neq |B| \), then \(f \) is linear.

Proof. We present the proof only when \(q > 0 \) because the second case is similar.
Let \(q > 0 \) and \(\frac{|a|^{p+q}}{|A|} < 1 \). Replacing \(y \) by \(-\frac{a}{bm}x \), where \(m \in \mathbb{N} \), in (10) we get
\[
\|f\left(\left(a - \frac{a}{m}\right)x\right) - Af(x) - Bf\left(-\frac{a}{bm}x\right)\| \leq c\|x\|^p \left|\frac{a}{bm}\right|^q, \quad x \in X \setminus \{0\},
\]
thus
\[
\begin{align*}
\left\| \frac{1}{A}f\left(\left(a - \frac{a}{m}\right)x\right) - B f\left(-\frac{a}{bm}x\right) - f(x) \right\| \\
&\leq \frac{c}{|A|} \left|\frac{a}{bm}\right|^q \|x\|^{p+q}, \quad x \in X \setminus \{0\}.
\end{align*}
\]
For \(x \in X \setminus \{0\} \) we define
\[
T_m \xi(x) := \frac{1}{A} \xi\left(\left(a - \frac{a}{m}\right)x\right) - B \frac{1}{A} \xi\left(-\frac{a}{bm}x\right),
\]
\begin{equation}
\varepsilon_m(x) := \frac{c}{|A|} \left| \frac{a}{bm} \right| \|x\|^{p+q},
\end{equation}

\begin{equation}
\Lambda_m \eta(x) := \left| \frac{1}{A} \right| \eta \left(a - \frac{a}{m} \right) x + \left| \frac{B}{A} \right| \eta \left(-\frac{a}{bm} x \right),
\end{equation}

and as in Theorem 2.1 we observe that (14) takes the form

\[\|T_m f(x) - f(x)\| \leq \varepsilon_m(x), \quad x \in X \setminus \{0\} \]

and \(\Lambda_m \) has the form described in (H3) with \(k = 2 \) and \(f_1(x) = (a - \frac{a}{m}) x, \)

\[f_2(x) = -\frac{a}{bm} x, \quad L_1(x) = \frac{a}{m}, \quad L_2(x) = \frac{A}{m} \]

for \(x \in X \setminus \{0\} \). Moreover, for every \(\xi, \mu \in Y \setminus \{0\}, \ x \in X \setminus \{0\} \)

\[\|T_m \xi(x) - T_m \mu(x)\| \leq 2 \sum_{i=1}^{n} L_i(x) \| (\xi - \mu)(f_i(x))\|, \]

so (H2) is valid.

Next we can find \(m_0 \in \mathbb{N}, \) such that

\[\frac{|a|^{p+q}}{|A|} 1 - \frac{1}{m} |x|^{p+q} + \frac{|B|}{|A|} \left| \frac{a}{m} \right|^{p+q} \left(\frac{1}{m} \right)^{p+q} < 1 \quad \text{for } m \in \mathbb{N}_{m_0}. \]

Therefore

\begin{align*}
\varepsilon_m^n(x) & := \sum_{n=0}^{\infty} \Lambda_m^n \varepsilon_m(x) \\
& = \frac{c}{|A|} \left| \frac{a}{bm} \right| \|x\|^{p+q} \sum_{n=0}^{\infty} \left(\frac{|a|^{p+q}}{|A|} 1 - \frac{1}{m} |x|^{p+q} + \frac{|B|}{|A|} \left| \frac{a}{m} \right|^{p+q} \left(\frac{1}{m} \right)^{p+q} \right)^n \\
& = \frac{c}{\frac{|a|^{p+q}}{|A|} 1 - \frac{1}{m} |x|^{p+q} - \frac{|B|}{|A|} \left| \frac{a}{m} \right|^{p+q} \left(\frac{1}{m} \right)^{p+q}}, \quad m \in \mathbb{N}_{m_0}, \ x \in X \setminus \{0\}.
\end{align*}

Hence, according to Theorem 1.1, for each \(m \in \mathbb{N}_{m_0} \) there exists a unique solution \(F_m : X \setminus \{0\} \rightarrow Y \) of the equation

\[F_m(x) = \frac{1}{A} F_m \left(a - \frac{a}{m} \right) x - \left(\frac{1}{A} \right) F_m \left(-\frac{a}{bm} x \right), \quad x \in X \setminus \{0\} \]

such that

\[\|f(x) - F_m(x)\| \leq \frac{c}{\frac{|a|^{p+q}}{|A|} 1 - \frac{1}{m} |x|^{p+q} - \frac{|B|}{|A|} \left| \frac{a}{m} \right|^{p+q} \left(\frac{1}{m} \right)^{p+q}}, \quad x \in X \setminus \{0\}. \]

Moreover,

\[F_m(ax + by) = AF_m(x) + BF_m(y), \quad x, y \in X \setminus \{0\}. \]

In this way we obtain a sequence \(\{F_m\}_{m \in \mathbb{N}_{m_0}} \) of linear functions such that

\[\|f(x) - F_m(x)\| \leq \frac{c}{\frac{|a|^{p+q}}{|A|} 1 - \frac{1}{m} |x|^{p+q} - \frac{|B|}{|A|} \left| \frac{a}{m} \right|^{p+q} \left(\frac{1}{m} \right)^{p+q}}, \quad x \in X \setminus \{0\}. \]
So, with $m \to \infty$, f is linear on $X \setminus \{0\}$ and by Theorem 1.2 f is linear.

Let $q > 0$ and $\frac{|A|}{|a|^{p+q}} < 1$. Replacing x by $\left(\frac{1}{a} - \frac{1}{am}\right)x$ and y by $\frac{1}{bm}x$, where $m \in \mathbb{N}$, in (10) we get

$$\|f\left(\frac{1}{a} - \frac{1}{am}\right)x + \frac{1}{bm}x\) - A\left(\frac{1}{a} - \frac{1}{am}\right)x - B\left(\frac{1}{bm}x\right)\| \leq c\left(\frac{1}{a} - \frac{1}{am}\right)x\|\|\frac{1}{bm}x\|\|\right|, \quad x \in X \setminus \{0\}.\]

Whence

$$\|f(x) - A\left(\frac{1}{a} - \frac{1}{am}\right)x - B\left(\frac{1}{bm}x\right)\| \leq c\left(\frac{1}{a} - \frac{1}{am}\right)x\|\|\frac{1}{bm}x\|\|\right|, \quad x \in X \setminus \{0\}.\]

For $x \in X \setminus \{0\}$ we define

$$\mathcal{T}_m \xi(x) := A\xi\left(\frac{1}{a} - \frac{1}{am}\right)x + B\xi\left(\frac{1}{bm}x\right),$$

$$\varepsilon_m(x) := c\left(\frac{1}{a}\right)\|\frac{1}{|b|^q}\|1 - \frac{1}{m}\|\|\frac{1}{|m|^q}\|\|x\|\|p+q, \quad \Lambda_m \eta(x) := |A|\eta\left(\frac{1}{a} - \frac{1}{am}\right)x + |B|\eta\left(\frac{1}{bm}x\right),$$

and as in Theorem 2.1 we observe that (14) takes form

$$\|\mathcal{T}_m f(x) - f(x)\| \leq \varepsilon_m(x), \quad x \in X \setminus \{0\}$$

and Λ_m has the form described in (H3) with $k = 2$ and $f_1(x) = \left(\frac{1}{a} - \frac{1}{am}\right)x$, $f_2(x) = \frac{1}{bam}x$, $L_1(x) = |A|$, $L_2(x) = |B|$ for $x \in X \setminus \{0\}$. Moreover, for every $\xi, \mu \in YX\setminus \{0\}, x \in X \setminus \{0\}$

$$\|\mathcal{T}_m \xi(x) - \mathcal{T}_m \mu(x)\| \leq \sum_{i=1}^{2} L_i(x)\|\xi - \mu\|f_i\|,$$

so (H2) is valid.

Next we can find $m_0 \in \mathbb{N}$, such that

$$\frac{|A|}{|a|^{p+q}}\left|1 - \frac{1}{m}\right|\|p+q + \frac{|B|}{|b|^p+q}\left|1 - \frac{1}{m}\right|\|p+q < 1 \quad \text{for} \quad m \in \mathbb{N}_{m_0}.\]

Therefore

$$\varepsilon_m(x) := \sum_{n=0}^{\infty} \Lambda_m^n \varepsilon_m(x)$$

$$= \varepsilon_m(x) \sum_{n=0}^{\infty} \left(\frac{|A|}{|a|^{p+q}}\left|1 - \frac{1}{m}\right| + \frac{|B|}{|b|^p+q}\left|1 - \frac{1}{m}\right|\right)^n$$
In this way we obtain a sequence \((F_m) \) \(m \in \mathbb{N}_m \), \(x \in X \setminus \{0\} \). By induction it is easy to get
\[
\|F_m\| \leq m \in \mathbb{N}_m, \, x \in X \setminus \{0\}.
\]

Hence, according to Theorem 1.1, for each \(m \in \mathbb{N}_m \) there exists a unique solution \(F_m : X \setminus \{0\} \to Y \) of the equation
\[
F_m(x) = AF_m(\frac{1}{a} - \frac{1}{am})x + BF_m(\frac{1}{bm})x, \quad x \in X \setminus \{0\}
\]
such that
\[
\|f(x) - F_m(x)\| \leq \frac{c}{1 - \frac{|a|}{|p| + q}} |1 - \frac{1}{m} - \frac{|b|}{|p| + q} | \|x\|^{p+q}, \quad x \in X \setminus \{0\}. \tag{15}
\]
Moreover,
\[
F_m(ax + by) = AF_m(x) + BF_m(y), \quad x, y \in X.
\]
In this way we obtain a sequence \((F_m)_{m \in \mathbb{N}_m} \) of linear functions such that (15) holds. It follows, with \(m \to \infty \), that \(f \) is linear. \(\square \)

Theorem 2.3. Let \(X, Y \) be normed spaces over \(\mathbb{F}, K \), respectively, \(a, b \in \mathbb{F} \setminus \{0\}, A, B \in \mathbb{K} \setminus \{0\}, c \geq 0, p, q > 0 \), and \(f : X \to Y \) satisfies
\[
\|f(ax + by) - Af(x) - Bf(y)\| \leq c\|x\|^p\|y\|^q, \quad x, y \in X. \tag{16}
\]
If \(|a|^{p+q} \neq |A| \) or \(|b|^{p+q} \neq |B| \), then \(f \) is linear.

Proof. Of course this theorem follows from Theorem 2.2 but as \(p, q \) are positive we can set \(0 \) in (16) and get an auxiliary equalities. In this way we obtain another proof which we present in the first case.

Assume that \(|a|^{p+q} < |A| \). Setting \(x = y = 0 \) in (16) we get
\[
f(0)(1 - A - B) = 0. \tag{17}
\]
With \(y = 0 \) in (16) we have
\[
f(ax) = Af(x) + bf(0), \quad x \in X
\]
thus
\[
f(x) = Af(\frac{x}{a}) + Bf(0), \quad x \in X.
\]
Using the last equality, (16) and (17) we get
\[
\left\|Af(\frac{ax + by}{a}) - AAF(\frac{x}{a}) - BAF(\frac{x}{a})\right\| \leq c\|x\|^p\|y\|^q, \quad x, y \in X.
\]
Replacing \(x \) by \(ax \), \(y \) by \(ay \) and dividing the last inequality by \(|A| \) we obtain
\[
\|f(ax + by) - Af(x) - Bf(y)\| \leq \frac{|a|^{p+q}}{|A|} \|x\|^p\|y\|^q, \quad x, y \in X.
\]
By induction it is easy to get
\[
\|f(ax + by) - Af(x) - Bf(y)\| \leq c\left(\frac{|a|^{p+q}}{|A|}\right)^n \|x\|^p\|y\|^q, \quad x, y \in X.
\]
Whence, with \(n \to \infty \), \(f(ax + by) = Af(x) + Bf(y) \) for \(x, y \in X \).
In the case $|A| < |a|^{p+q}$, we use the equation $f(x) = \frac{1}{a} f(ax) - \frac{b}{a} f(0)$ together with (16) and (17).

The following examples show that the assumption in the above theorems are essential.

Example 2.4. Let $f : \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = x^2$. Then f satisfies

$$|f(x + y) - f(x) - f(y)| \leq 2|x||y|, \quad x, y \in \mathbb{R},$$

but f does not satisfy the Cauchy equation.

Example 2.5. More generally a quadratic function $f(x) = x^2$, $x \in \mathbb{R}$ satisfies

$$|f(ax + by) - Af(x) - Bf(y)| \leq 2|ab||x||y|, \quad x, y \in \mathbb{R},$$

where $A = a^2$, $B = b^2$, but f does not satisfy the linear equation (1).

Example 2.6. A function $f(x) = |x|$, $x \in \mathbb{R}$ satisfies

$$|f(x + y) - f(x) - f(y)| \leq c, \quad x, y \in \mathbb{R},$$

but it is not linear.

To the end we show simple application of the above theorems.

Corollary 2.7. Let X, Y be normed spaces over \mathbb{F}, \mathbb{K}, respectively, $a, b \in \mathbb{F} \setminus \{0\}, A, B \in \mathbb{K} \setminus \{0\}, c \geq 0, p, q \in \mathbb{R}$, $H : X^2 \to Y$, $H(w, z) \neq 0$ for some $z, w \in X$ and

$$\|H(x, y)\| \leq c \|x\|^p \|y\|^q, \quad x, y \in X \setminus \{0\},$$

where $c \geq 0$, $p, q \in \mathbb{R}$. If one of the following conditions

1. $p + q < 0$,
2. $q > 0$ and $|a|^{p+q} \neq |A|$,
3. $p > 0$ and $|b|^{p+q} \neq |B|$,

holds, then the functional equation

$$h(ax + by) = Ah(x) + Bh(y) + H(x, y), \quad x, y \in X$$

has no solutions in the class of functions $h : X \to Y$.

Proof. Suppose that $h : X \to Y$ is a solution to (19). Then (10) holds, and consequently, according to the above theorems, h is linear, which means that $H(w, z) = 0$. This is a contradiction. \qed
Example 2.8. The functions $f: \mathbb{R} \to \mathbb{R}$ defined as $f(x) = x^2$ and $H: \mathbb{R}^2 \to \mathbb{R}$ given by $H(x,y) = 2xy$ satisfy the equation
\[f(x + y) = f(x) + f(y) + H(x,y), \quad x, y \in \mathbb{R} \]
and do not fulfill any condition (1)–(3) of Corollary 2.7.

Remark 2.9. We notice that our results correspond with the new results from hyperstability, for example in [4] was proved that linear equation is φ-hyper-stable with $\varphi(x,y) = c \|x\|^p \|y\|^q$, but there was considered only the case when $c, p, q \in [0, +\infty)$ (see Theorem 20).

References

Institute of Mathematics
Pedagogical University
Podchorążych 2
PL-30-084 Kraków, Poland
E-mail address: magdap@up.krakow.pl