DOI QR코드

DOI QR Code

Validation of diacylglycerol O-acyltransferase1 gene effect on milk yield using Bayesian regression

베이지안 회귀를 이용한 국내 홀스타인 젖소의 유량형질 관련 DGAT1유전자 효과 검증

  • 조광현 (농촌진흥청 국립축산과학원) ;
  • 조충일 (농촌진흥청 국립축산과학원) ;
  • 박경도 (한경대학교 유전정보연구소) ;
  • 이준호 (한경대학교 유전정보연구소)
  • Received : 2015.07.20
  • Accepted : 2015.11.24
  • Published : 2015.11.30

Abstract

DGAT1(diacylglycerol O-acyltransferase1) gene is well known as a major gene of milk production in dairy cattle. This study was conducted to investigate how the DGAT1 gene effect on milk yield was appeared from the genome wide association (GWA) using high density whole genome SNP chip. The data set used in this study consisted of 353 Korean Holstein sires with 50k SNP genotypes and deregressed estimated breeding values of milk yield. After quality control 41,051 SNPs were selected and locations on chromosome were mapped using UMD 3.1. Bayesian regression of BayesB method (pi=0.99) was used to estimate the SNP effects and genomic breeding values. Percentages of variance explained by 1 Mb non-overlapping windows were calculated to detect the QTL region. As the result of this study, top 1 and 3 of 2,516 windows were seen around DGAT1 gene region and 0.51% and 0.48% of genetic variance were explained by these two windows. Although SNPs on the DGAT1 gene region are excluded in commercial 50k SNP chip, the effect of DGAT1 gene seem to be reflected on GWA by the SNPs which are in linkage disequilibrium with DGAT1 gene.

젖소의 유생산 형질에 가장 큰 영향을 미치는 유전자들 중 하나로 알려진 DGAT1 유전자의 효과를 국내 젖소 종축의 고밀도 유전체 정보를 이용하여 검증하기 위하여 본 연구를 수행하였다. 국내 젖소 씨수소로 구성된 353두의 고밀도 유전체 정보, 혈통, 추정 육종가 및 신뢰도 정보를 수집하였으며, 단일염기다형성 효과를 추정하기 위한 종속변량으로 가장 정확한 유전체 육종가를 예측할 수 있는 DeRegressed EBV를 산출하여 분석에 이용하였다. BovineSNP50 v2 패널을 이용하여 구명한 고밀도 유전자형 정보 중 유효성검증 과정을 통하여 41,051개 SNP을 선정하였으며, 각 단일 염기다형성의 실제적 유전체 육종가 기여도를 확인하기 위하여 유전체 선발방법 중 하나인 베이즈B (pi=0.99) 방법을 이용하여 SNP 효과를 추정하였다. 1메가 베이스페어의 구간으로 구성된 유전체 전장의 2,516개 윈도우 별 유전분산 설명력을 계산한 결과 상위 1, 3 윈도우가 DGAT1유전자 주변에서 발견되었으며, 이 두 윈도우의 유전분산 설명력은 각각 0.51% 및 0.48%인 것으로 나타났다. DGAT1유전자는 유전체 선발에 상업적으로 이용되는 50k SNP chip에 포함되어있지 않기 때문에 직접적인 유전자의 효과가 명확하게 드러나지는 않지만 DGAT1 유전자에 인접한 단일염기다형성들간의 연관불평형에 의하여 주변 윈도우에서 가장 높은 유전분산 설명력을 보이는 것으로 사료된다.

Keywords

References

  1. Boichard, D., Ducrocq V. and Fritz, S. (2015). Sustainable dairy cattle selection in the genomic era. Journal of Animal Breeding and Genetics, 132, 135-143. https://doi.org/10.1111/jbg.12150
  2. Daetwyler, H. D., Schenkel, F. S., Sargolzaei, M. and Robinson J. A. B. (2008). A Genome scan to setect quantitative trait loci for economically important traits in holstein cattle using two methods and a dense single nucleotide polymorphism map. Journal of Dairy Science, 91, 3225-3236. https://doi.org/10.3168/jds.2007-0333
  3. Ding, X., Zhang, Z., Li, X., Wang, S., Wu, X., Sun, D., Yu, Y., Liu, J., Wang, Y., Zhang, Y., Zhang, S., Zhang, Y. and Zhang, Q. (2013). Accuracy of genomic prediction for milk production traits in the Chinese Holstein population using a reference population consisting of cows. Journal of Dairy Science, 96, 5315-5323. https://doi.org/10.3168/jds.2012-6194
  4. Garrick, D. J., Taylor, J. F. and Fernando, R. L. (2009) Deregressing estimated breeding values and weighting information for genomic regression analyses. Genetics Selection Evolution, 41, 55-63. https://doi.org/10.1186/1297-9686-41-55
  5. Gianola, D., de los Campos, G., Hill, W. G. Manfrdi, E. and Fernando, R. (2009). Additive genetic variability and the bayesian alphabet. Genetics, 183, 347-363. https://doi.org/10.1534/genetics.109.103952
  6. Grisart, B., Coppieters, W., Farnir, F., Karim, L., Ford, C., Berzi, P., Cambisano, N., Mni, M., Reid, S., Simon, P., Spelman, R., Georges, M. and Snell, R.. (2002) Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Research, 12, 222-231. https://doi.org/10.1101/gr.224202
  7. Habier, D., Fernando, R. L., Kizilkaya, K. and Garrick, D. J. (2011). Extension of the bayesian alphabet for genomic selection. BMC Bioinformatics, 12, 186-198. https://doi.org/10.1186/1471-2105-12-186
  8. Hayes, B. J., Bowman, P. J., Chamberlain, A. J. and Goddard, M. E. (2009). Invited review: Genomic selection in dairy cattle: progress and challenges. Journal of Dairy Science, 92, 433-443. https://doi.org/10.3168/jds.2008-1646
  9. Hayes, B. J., Pryce, J., Chamberlain, A. J., Bowman, P. J. and Goddard, M. E. (2010). Genetic architecture of complex traits and accuracy of genomic prediction: Coat colour, milk-fat percentage, and type in Holstein cattle as contrasting model traits. PLoS Genetics, 6, e1001139. https://doi.org/10.1371/journal.pgen.1001139
  10. Kemper, K. E., Reich, C. M., Bowman, P. J., Jagt, C. J., Chamberlain, A. J., Mason, B. A., Hayes, B. J. and Goddard, M. E. (2015). Improved precision of QTL mapping using a nonlinear Bayesian method in a multi-breed population leads to greater accuracy of across-breed genomic predictions. Genetics Selection Evolution, 47, 29-46. https://doi.org/10.1186/s12711-014-0074-4
  11. Mai, M. D., Sahana, G., Christiansen, F. B. and Guldbrandtsen. B. (2014). A genome-wide association study for milk production traits in Danish Jersey cattle using a 50K single nucleotide polymorphism chip. Journal of Animal Science, 88, 3522-3528.
  12. Maxa, J., Neuditschko, M., Russ, I., Forster, M. and Medugorac, I. (2012). Genome-wide association mapping of milk production traits in Braunvieh cattle. Journal of Dairy Science, 88, 3522-3528.
  13. Meredith, B. K., Kearney, F. J., Finlay, E. K., Bradley, D. G., Fahey, A. G., Berry, D. P. and Lynn, D. J. (2012). Genome-wide associations for milk production and somatic cell score in Holstein-Friesian cattle in Ireland. BMC Genomics, 13, 21-32. https://doi.org/10.1186/1471-2164-13-21
  14. Mrode, R., Coffey, M. and Berry, D. P. (2010). Understanding genomic evaluations from various evaluation methods and GMACE. Interbull Bulletin, 42, 52-55.
  15. Oh, D. Y., Yeo, J. S. and Lee, J. Y. (2014). Major SNP identification for oleic acid and marbling score which are associated with Korean cattle. Journal of the Korean Data & Information Science Society, 25, 1011-1024. https://doi.org/10.7465/jkdi.2014.25.5.1011
  16. Ostersen, T., Christensen, O. F., Henryon, M., Nielsen, B., Su, G. and Madsen, P. (2011). Deregressed EBV as the response variable yield more reliable genomic predictions than traditional EBV in pure-bred pigs. Genetics Selection Evolution, 43, 38-44. https://doi.org/10.1186/1297-9686-43-38
  17. Raven, L., Cocks, B. G. and Hayes, B. J. (2014). Multibreed genome wide association can improve precision of mapping causative variants underlying milk production in dairy cattle. BMC Genomics, 15, 62-76. https://doi.org/10.1186/1471-2164-15-62
  18. Saatchi M., Schnabel, R. D., Taylor, J. F. and Garrick, D. J. (2014). Large-effect pleiotropic or closely linked QTL segregate within and across ten US cattle breeds. BMC Genomics, 15, 442-458. https://doi.org/10.1186/1471-2164-15-442
  19. Schnabel, R. D., Sonstegard, T. S., Taylor, J. F. and Ashwell M. S. (2005). Whole-genome scan to detect QTL for milk production, conformation, fertility and functional traits in two US Holstein families. Animal Genetics, 36, 408-416. https://doi.org/10.1111/j.1365-2052.2005.01337.x
  20. Schennink, A., Stoop, W. M., Visker, M. H. P. W., Heck, J. M. L., Bovenhuis, H., van der Poel, J. J., van Valenberg, H. J. F. and van Arendonk,J. A. M. (2007). DGAT1 underlies large genetic variation in milk-fat composition of dairy cows. Animal Genetics, 38, 467-473. https://doi.org/10.1111/j.1365-2052.2007.01635.x
  21. Seo, S. M., Kim, T. H. and Kim, J. H. (2014). Comparison and analysis of multiple testing methods for microarray gene expression data. Journal of the Korean Data & Information Science Society, 25, 971-986. https://doi.org/10.7465/jkdi.2014.25.5.971
  22. Son, J. Y., Jeong H. J., Yu, S. L., Lee, J. H. Do, C. H., Ryoo, S. H. and Sand, B. C. (2009). Characterization of the DGAT1 gene in the Korean Holstein dairy cattle population. Journal of Agricultural Science, 36, 167-177.
  23. Tiezzi, F. and Maltecca, C. (2015). Accounting for trait architecture in genomic predictions of US Holstein cattle using a weighted realized relationship matrix. Genetics Selection Evolution, 47, 24-37. https://doi.org/10.1186/s12711-015-0100-1
  24. Zhang, Z., Erbe, M., He, J., Ober, U., Gao, N., Zhang, H., Simianer, H. and Li, J. (2015). Accuracy of whole-genome prediction using genetic architecture-enhanced variance-covariance matrix. Genes Genomes Genetics, 5, 615-627.

Cited by

  1. Estimation of Genetic Parameters for Milk Production Traits Using a Multiple Traits Model in Holstein Dairy Cattle vol.52, pp.4, 2018, https://doi.org/10.14397/jals.2018.52.4.79
  2. 단일염기다형성 정보를 이용한 국내 홀스타인 젖소의 유효집단 크기 추정 vol.28, pp.3, 2015, https://doi.org/10.7465/jkdi.2017.28.3.597