DOI QR코드

DOI QR Code

A Study on Fabrication of 3D Dual Pore Scaffold by Fused Deposition Modeling and Salt-Leaching Method

열 용해 적층법과 염 침출법을 이용한 3 차원 이중 공 인공지지체 제작에 관한 연구

  • Shim, Hae-Ri (Dept. of Mechanical Engineering, Andong Nat'l Univ.) ;
  • Kim, Jong Young (Dept. of Mechanical Engineering, Andong Nat'l Univ.)
  • Received : 2015.06.10
  • Accepted : 2015.08.13
  • Published : 2015.12.01

Abstract

Scaffold fabrication technology using a 3D printer was developed for damaged bone tissue regeneration. A scaffold for bone tissue regeneration application should be biocompatible, biodegradable, and have an adequate mechanical strength. Moreover, the scaffold should have pores of satisfactory quantity and interconnection. In this study, we used the polymer deposition system (PDS) based on fused deposition modeling (FDM) to fabricate a 3D scaffold. The materials used were polycaprolactone (PCL) and alginic acid sodium salt (sodium alginate, SA). The salt-leaching method was used to fabricate dual pores on the 3D scaffold. The 3D scaffold with dual pores was observed using SEM-EDS (scanning electron microscope-energy dispersive spectroscopy) and evaluated through in-vitro tests using MG63 cells.

3D 프린터를 이한 인공지지체 제작 기술은 손상된 골 조직 재생을 위해 개발되고 있다. 골 조직 재생에 적하기 위해 인공지지체는 생체적합성, 생분해성 그리고 적절한 기계적 특성을 지녀야 하며, 분한 양의 공극과 내부 연결성을 지닌 구조로 제작되어야 한다. 본 연구에서는 3 차원 이중 공극 인공지지체를 제작하기 위해서 열 해 적층법(fused deposition modeling, FDM) 기반의 폴리머 적층 시스템을 이하였다. 사된 재료는 폴리카프로락톤(polycaprolactone, PCL)과 알긴산 나트륨(sodium alginate, SA)이다. 제작된 3 차원 형상의 인공지지체에 이중 공극을 갖기 위해 염 침출법을 이하였다. 완성된 인공지지체는 주사 전자 현미경과 X 선 검출 분광기(scanning electron microscope-energy dispersive spectroscopy, SEM-EDS)를 통해 관찰하였으며, MG-63 세포를 이하여 in-vitro 평가를 하였다.

Keywords

References

  1. Bonassar, L. J. and Vacanti, C. A., 1998, "Tissue Engineering: The First Decade and Beyond," Journal of Cellular Biochemistry, Vol. 72, No. 30-31, pp. 297-303. https://doi.org/10.1002/(SICI)1097-4644(1998)72:30/31+<297::AID-JCB36>3.0.CO;2-6
  2. Cancedda, R., Dozin, B., Giannoni, P. and Quarto, R., 2003, "Tissue Engineering and Cell Therapy of Cartilage and Bone," Matrix Biology, Vol. 22, No. 1, pp. 81-91. https://doi.org/10.1016/S0945-053X(03)00012-X
  3. Vats, A., Tolley, N. S., Polak, J. M. and Gough, J. E., 2003, "Scaffolds and Biomaterials for Tissue Engineering: are View of Clinical Applications," Clinical Otolaryngology and Alliend Sciences, Vol. 28, No. 3, pp.165-172. https://doi.org/10.1046/j.1365-2273.2003.00686.x
  4. Moutos, F. T., Freed, L. E. and Guilak, F., 2007, "A Biomimetic Three-dimensional Woven Composite Scaffold for Functional Tissue Engineering of Cartilage," Nature Materials, Vol. 6, pp. 162-167. https://doi.org/10.1038/nmat1822
  5. Uchida, T., Ikeda, S., Oura, H., Tada, M., Nakano, T., Fukuda, T., Matsuda, T., Negoro, M. and Arai, F., 2008, "Development of Biodegradable Scaffolds based on Patient-specific Arterial Configuration," Journal of Biotechnology, Vol. 133, No. 2, pp. 213-218. https://doi.org/10.1016/j.jbiotec.2007.08.017
  6. Lee, S. B., Kim, Y. H., Chong, M. S., Hong, S. H. and Lee, Y. M., 2005, "Study of Gelatin-containing Artificial Skin V: Fabrication of Gelatin Scaffolds using a SA-leaching Method," Biomaterials, Vol. 26, No. 14, pp. 1961-1968. https://doi.org/10.1016/j.biomaterials.2004.06.032
  7. Cho, Y. S., Kim, B. S., You, H. K. and Cho, Y. S., 2014, "A Novel Technique for Scaffold Fabrication: SLUP (salt leaching using powder)," Current Applied Physics, Vol. 14, No. 3, pp. 371-377. https://doi.org/10.1016/j.cap.2013.12.013
  8. Kim, H. J., Park, I. K., Kim, J. H., Cho, C. S. and Kim, M. S., 2012, "Gas Foaming Fabrication of Porous Biphasic Calcium Phosphate for Bone Regeneration," Tissue Engineering and Regenerative Medicine, Vol. 9, No. 2, pp. 63-68. https://doi.org/10.1007/s13770-012-0022-8
  9. Ramay, H. R. and Zhang, M., 2003, "Preparation of Porous Hydroxyapatite Scaffolds by Combination of the Gel-casting and Polymer Sponge Methods," Biomaterials, Vol. 24, No. 19, pp. 3293-3302. https://doi.org/10.1016/S0142-9612(03)00171-6
  10. Lee, J. W., Kim, J. Y. and Cho, D. W., 2010, "Solid Free-form Fabrication Technology and Its Application to Bone Tissue Engineering," International Journal of Stem Cells, Vol. 3, No. 2, pp. 85-95. https://doi.org/10.15283/ijsc.2010.3.2.85
  11. Ha, S. W. and Kim, J. Y., 2014, "Fabrication and Evaluation of Hybrid Scaffold by Nano-Micro Precision Deposition System," Trans. Korean Soc. Mech. Eng. A, Vol. 38, No.8, pp. 875-880. https://doi.org/10.3795/KSME-A.2014.38.8.875
  12. Ahn, S.H., Koh, Y. H. and Kim, G. H., 2010, "A three-dimensional Hierarchical Collagen Scaffolds Fabricated by a Combined Solid Freeform Fabrication (SFF) and Electrospinning Process to Enhance Mesenchymal Stem Cell (MSC) Proliferation," Journal of Micromechanice Microengineering, Vol. 20, No. 6, pp. 1-7.
  13. Olakanmi, E. O., 2013, "Selective Laser Sintering /Melting (SLS/SLM) of Pure Al, Al-Mg, and Al-Si Powders: Effect of Processing Conditions and Powder Properties," Journal of Materials Processing Technology, Vol. 213, No. 8, pp. 1387-1405. https://doi.org/10.1016/j.jmatprotec.2013.03.009
  14. Sa, M. W. and Kim, J. Y., 2013, "Effect of Various Blending Ratios on the Cell Characteristics of PCL and PLGA Scaffolds Fabricated by Polymer Deposition System," International Journal of Precision Engineering and Manufacturing, Vol. 14, No. 4, pp. 649-655. https://doi.org/10.1007/s12541-013-0087-x
  15. Cho, Y. S., Hong, M. W., Kim, S. Y., Lee, S. J., Lee, J. H., Kim, Y. Y. and Cho, Y. S., 2014, "Fabrication of Dual-pore Scaffolds using SLUP (Salt leaching using powder) and WNM (wire-network molding) Techniques," Materials Science and Engineering C, Vol. 45, pp. 546-555. https://doi.org/10.1016/j.msec.2014.10.009
  16. Baek, S. K., 2012, "Bone Regeneration with Polycaprolactone Scaffold Synthesized with the Combination of RP Method and Salt leaching," D.D.S., Graduate School of Clinical Dentistry, Korea University.
  17. Martina, M. and Hutmacher, D. W., 2007, "Biodegradable Polymers Applied in Tissue Engineering Research: a Review," Polymer International, Vol. 56, No. 2, pp. 145-157. https://doi.org/10.1002/pi.2108
  18. Wang, L., Shelton, R. M., Cooper, P. R., Lawson, M., Triffitt, J. T. and Barralet, J. E., 2003, "Evaluation of Sodium Alginate for Bone Marrow Cell Tissue Engineering," Biomaterials, Vol. 24, No. 20, pp. 3475-3481. https://doi.org/10.1016/S0142-9612(03)00167-4
  19. Park, K. E., Park, S. A., Kim, G. H. and Kim, W. D., 2008, "Preparation and Characterization of Sodium Alginate/PEO and Sodium Alginate/PVA Nanofiber," Polymer(Korea), Vol. 32, No. 3, pp. 206-212.
  20. Lee, D.G., Lee, G. H., Jang, K. H., Chae, H. J. and Moon, J. D., 2012, "A Suspicious Case of Chloroform Induced Acute Toxic Hepatitis in Laboratory Worker," Korean Journal of Occupational Environmental Medicine, Vol. 24, No. 3, pp. 304-310.

Cited by

  1. The Development of Gelatin-Based Bio-Ink for Use in 3D Hybrid Bioprinting vol.19, pp.5, 2018, https://doi.org/10.1007/s12541-018-0092-1