DOI QR코드

DOI QR Code

Effect of African Mango (Irvingia gabonesis, IGOB 131TM) Extract on Glucose Regulation in STZ-Induced Diabetes

Streptozotocin으로 유발한 당뇨동물 모델에서 아프리칸 망고 추출물의 혈당 조절 효과

  • Ha, Yejin (Research Institute of Medical Nutrition, Kyung Hee University) ;
  • Lee, Minhee (Research Institute of Medical Nutrition, Kyung Hee University) ;
  • Kwon, Han Ol (Research Institute of Medical Nutrition, Kyung Hee University) ;
  • Lee, Yoo-Hyun (Department of Food and Nutrition, University of Suwon)
  • 하예진 (경희대학교 임상영양연구소) ;
  • 이민희 (경희대학교 임상영양연구소) ;
  • 권한올 (경희대학교 임상영양연구소) ;
  • 이유현 (수원대학교 식품영양학과)
  • Received : 2015.07.31
  • Accepted : 2015.10.07
  • Published : 2015.11.30

Abstract

This study investigated the regulatory effects of African mango (Irvingia gabonesis, IGOB $131^{TM}$) extract on blood glucose level in streptozotocin (STZ)-induced diabetic rats. Experimental groups were treated with two different doses of IGOB $131^{TM}$ (1% and 2% in each AIN93G supplement) for 5 weeks [4 weeks pre-treatment and 1 week post-STZ treatment (60 mg/kg body weight)]. STZ-induced diabetic rats showed significantly reduced body weight gain compared to normal control (NC). Oral glucose tolerance test (OGTT) was measured using glucose oxidase-peroxidase reactive strips. The area of under the curve for the glucose response from OGTT in STZ-induced diabetic rats was higher than that of NC rats, and there was a significant difference between the DM and the IGOB $131^{TM}$-treated groups. Serum glucose levels after sacrifice were significantly lower in the IGOB $131^{TM}$ group than the DM group. However, there was no statistical difference between low- and high-dose treatments. Serum insulin levels increased by 234.4% and 175.9%, respectively, upon treatment with IGOB $131^{TM}$. Serum lipid profiles were not significantly different among the experimental groups. The tested samples had no effects on serum levels of lipid profiles (triglyceride, total cholesterol, low density lipoprotein/very low density lipoprotein-cholesterol, high density lipoprotein-cholesterol). These results suggest that IGOB $131^{TM}$ is able to ameliorate diabetes by reducing serum glucose levels that may result from increased insulin levels.

본 연구는 당뇨유발모델 쥐에서 아프리칸 망고(Irvingia gabonesis, IGOB $131^{TM}$) 추출물의 혈당 조절 효과를 알아보기 위해 SD계 수컷 흰쥐에 IGOB $131^{TM}$ 1%, IGOB $131^{TM}$ 2%(IGOB $131^{TM}$ 353 mg/kg body weight, IGOB $131^{TM}$ 706 mg/kg body weight)와 pinitol을 5주간 매일 강제 경구 투여하였다. 그리고 streptozotocin을 복강 주사하여 당뇨를 유발시킨 후 경구 당부하 검사(OGTT)를 실시하였다. 정상군에 비해 당뇨 유발군(DM, pinitol, IGOB $131^{TM}$ 1%, IGOB $131^{TM}$ 2%)의 체중 증가는 유의적으로 감소하였고, 당뇨 유발군 간의 유의적인 차이는 나타나지 않았다. 경구 당부하 검사 결과에서 DM군이 정상군에 비해 유의적으로 높았고, pinitol군, IGOB $131^{TM}$ 1%, IGOB $131^{TM}$ 2%군은 DM에 비해 각각 39.70%, 33.00%, 29.67% 유의적으로 감소하였다. 혈청 glucose 농도는 정상군에 비해 당뇨 유발군에서 유의적으로 높게 나타났고, pinitol, IGOB $131^{TM}$ 1%, IGOB $131^{TM}$ 2%군은 DM에 비해 유의적으로 감소하였다. 또한 혈청 insulin 농도는 정상군에 비해 당뇨 유발군에서 유의적으로 낮게 나타났고, pinitol, IGOB $131^{TM}$ 1%, IGOB $131^{TM}$ 2%군은 DM에 비해 유의적으로 증가한 것으로 나타났다. 따라서 아프리칸 망고 추출물이 STZ 유도 당뇨쥐의 혈청 insulin 함량을 개선시켜 혈청 glucose를 감소하는 효과가 있는 것으로 사료된다.

Keywords

References

  1. Korean Statistical Association. 2013. Annual report on the prevalence of diabetes. Korean Statistical Association, Seoul, Korea.
  2. Korean Statistical Association. 2013. Annual report on the cause of death statistics. Korean Statistical Association, Seoul, Korea.
  3. DeFronzo RA, Bonadonna RC, Ferrannini E. 1992. Pathogenesis of NIDDM. A balanced overview. Diabetes Care 15: 318-368. https://doi.org/10.2337/diacare.15.3.318
  4. Amos AF, McCarty DJ, Zimmet P. 1997. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med 14: S1-S85.
  5. Lee TH. 1999. Diagnosis and classification of diabetes mellitus. Food Industry and Nutrition 4(2): 61-65.
  6. King H, Aubert RE, Herman WH. 1998. Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections. Diabetes Care 21: 1414-1431. https://doi.org/10.2337/diacare.21.9.1414
  7. Atta-Ur-Rahman, Zaman K. 1989. Medicinal plants with hypoglycemic activity. J Ethnopharmacol 26: 1-55. https://doi.org/10.1016/0378-8741(89)90112-8
  8. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. 2003. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 26: S5-S20. https://doi.org/10.2337/diacare.26.2007.S5
  9. Selvin E, Marinopoulos S, Berkenblit G, Rami T, Brancati FL, Powe NR, Golden SH. 2004. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med 141: 421-431. https://doi.org/10.7326/0003-4819-141-6-200409210-00007
  10. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. 2003. ${\beta}$-Cell deficit and increased ${\beta}$-cell apoptosis in humans with type 2 diabetes. Diabetes 52: 102-110. https://doi.org/10.2337/diabetes.52.1.102
  11. Robertson RP, Harmon J, Tran PO, Tanaka Y, Takahashi H. 2003. Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 52: 581-587. https://doi.org/10.2337/diabetes.52.3.581
  12. El-Alfy AT, Ahmed AA, Fatani AJ. 2005. Protective effect of red grape seeds proanthocyanidins against induction of diabetes by alloxan in rats. Pharmacol Res 52: 264-270. https://doi.org/10.1016/j.phrs.2005.04.003
  13. Gunnarsson R, Berne C, Hellerstrom C. 1974. Cytotoxic effects of streptozotocin and N-nitrosomethylurea on the pancreatic B cells with special regard to the role of nicotinamide- adenine dinucleotide. Biochem J 140: 487-494. https://doi.org/10.1042/bj1400487
  14. Like AA, Rossini AA. 1976. Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science 193: 415-417. https://doi.org/10.1126/science.180605
  15. Ohtani KI, Shimizu H, Sato N, Mori M. 1998. Troglitazone (CS-045) inhibits beta-cell proliferation rate following stimulation of insulin secretion in HIT-T 15 cells. Endocrinology 139: 172-178. https://doi.org/10.1210/endo.139.1.5670
  16. Lee I, Rhee I, Kim K. 1997. Prediabetic in vitro model in pancreatic beta cells induced by streptozotocin. Yakhak Hoeji 41: 260-267.
  17. Ngondi JL, Oben JE, Minka SR. 2005. The effect of Irvingia gabonesis seeds on body weight and blood lipids of obese subjects in Cameroon. Lipids Health Dis 4: 12-15. https://doi.org/10.1186/1476-511X-4-12
  18. Omoruyi F, Adamson I. 1993 Digestive and hepatic enzymes in streptozotocin-induced diabetic rats fed supplements of dikanut (Irvingia gabonensis) and cellulose. Ann Nutr Metab 37: 14-23. https://doi.org/10.1159/000177744
  19. Omoruyi F, Adamson I. 1994. Effect of supplements of dikanut (Irvingia gabonensis) and cellulose on plasma lipids and composition of hepatic phospholipids in streptozotocin-induced diabetic rat. Nutrition Research 14: 537-544. https://doi.org/10.1016/S0271-5317(05)80217-9
  20. Dzeufiet DPD, Ngeutse DF, Dimo T, Tedong L, Ngueguim TF, Tchamadeu MC, Nkouambou NC, Sokeng DS, Kamtchouing P. 2009. Hypoglycemic and hypolipidemic effects of Irvingia gabonensis (Irvingiaceae) in diabetic rats. Pharmacologyonline 2: 957-962.
  21. Lee M, Nam DE, Kim OK, Shim TJ, Kim JH, Lee J. 2014. Anti-obesity effects of African mango (Irvingia gabonesis, IGOB 131$^{TM}$) extract in leptin-deficient obese mice. J Korean Soc Food Sci Nutr 43: 1477-1483. https://doi.org/10.3746/jkfn.2014.43.10.1477
  22. Kamran M, Bahrami A, Soltani N, Keshavarz M, Farsi L. 2013. GABA-induced vasorelaxation mediated by nitric oxide and GABAA receptor in non diabetic and streptozotocin-induced diabetic rat vessels. Gen Physiol Biophys 32: 101-106. https://doi.org/10.4149/gpb_2013013
  23. Gregory M, Khandelwal VK, Mary RA, Kalaichelvan VK, Palanivel V. 2014. Barringtonia acutangula improves the biochemical parameters in diabetic rats. Chin J Nat Med 12: 126-130.
  24. Ozolua RI, Eriyamremu GE, Okene EO, Ochei U. 2006. Hypoglycaemic effects of viscous preparation of Irvingia gabonensis (Dikanut) seeds in streptozotocin-induced diabetic Wistar rats. J Herbs Spices Med Plants 12: 1-9. https://doi.org/10.1300/J044v12n04_01
  25. Huang B, Wang Z, Park JH, Ryu OH, Choi MK, Lee JY, Kang YH, Lim SS. 2015. Anti-diabetic effect of purple corn extract on C57BL/KsJ db/db mice. Nutr Res Pract 9: 22-29. https://doi.org/10.4162/nrp.2015.9.1.22
  26. Bates SH, Jones RB, Bailey CJ. 2000. Insulin-like effect of pinitol. Br J Pharmacol 130: 1944-1948. https://doi.org/10.1038/sj.bjp.0703523
  27. Gianani R. 2011. Beta cell regeneration in human pancreas. Semin Immunopathol 33: 23-27. https://doi.org/10.1007/s00281-010-0235-7
  28. Hong SW, Ranjan K, Lee S, Shin YJ, Min BH, Park IS. 2007. The roles of clusterin on morphogenesis of beta cells during pancreas regeneration. J Korean Diabetes Assoc 31: 1-8. https://doi.org/10.4093/jkda.2007.31.1.1
  29. Goldberg RB. 1981. Lipid disorders in diabetes. Diabetes Care 4: 561-572. https://doi.org/10.2337/diacare.4.5.561
  30. Reaven GM. 1987. Abnormal lipoprotein metabolism in non-insulin-dependent diabetes mellitus. Pathogenesis and treatment. Am J Med 83: 31-40.
  31. Hossain MS, Sokeng S, Shoeb M, Hasan K, Mosihuzzaman M, Nahar N, Ali L, Rokeya B. 2012. Hypoglycemic effect of Irvingia gabonensis (Aubry-Lacomate Ex. Ororke), Baill in type 2 diabetic long-evans rats. Dhaka Univ J Pharm Sci 11: 19-24.

Cited by

  1. Beneficial Effects of Acanthopanax senticosus Extract in Type II Diabetes Animal Model via Down-Regulation of Advanced Glycated Hemoglobin and Glycosylation End Products vol.45, pp.7, 2016, https://doi.org/10.3746/jkfn.2016.45.7.929
  2. Streptozotocin 유발 당뇨모델을 이용한 건조누에 동충하초의 항당뇨 효과 vol.30, pp.4, 2015, https://doi.org/10.9799/ksfan.2017.30.4.665