DOI QR코드

DOI QR Code

Effects of Agaricus blazei Murill Water Extract on Immune Response in BALB/c Mice

신령버섯(Agaricus blazei Murill) 열수 추출물의 면역 활성에 미치는 영향

  • Kang, In Soon (Department of Pharmacology and Toxicology, Inha University School of Medicine) ;
  • Kim, Rang Ie (Department of Pharmacology and Toxicology, Inha University School of Medicine) ;
  • Kim, Gwang Sub (Department of Pharmacology and Toxicology, Inha University School of Medicine) ;
  • Kim, Na Ri (Geonwoo Food & Pharm. Co., Ltd.) ;
  • Shin, Joong Yup (Geonwoo Food & Pharm. Co., Ltd.) ;
  • Kim, Chaekyun (Department of Pharmacology and Toxicology, Inha University School of Medicine)
  • 강인순 (인하대학교 의과대학 약리학교실) ;
  • 김랑이 (인하대학교 의과대학 약리학교실) ;
  • 김광섭 (인하대학교 의과대학 약리학교실) ;
  • 김나리 ((주)건우에프피) ;
  • 신중엽 ((주)건우에프피) ;
  • 김채균 (인하대학교 의과대학 약리학교실)
  • Received : 2015.07.23
  • Accepted : 2015.09.03
  • Published : 2015.11.30

Abstract

The edible mushroom Agaricus blazei Murill is known to have many physiological functions, including antitumor, antiviral, and anti-inflammatory effects. Aqueous extracts were obtained by extracting A. blazei in water at $90^{\circ}C$ for 15 h, followed by spray-drying with dextran at a 70:30 ratio. In this study, we examined the immunomodulatory effect of A. blazei Murill water extract (ABM) in BALB/c mice. Mice were administered orally with 4, 20, and 100 mg/kg of ABM for 21 days. ABM-treated mice did not show significant differences in body and organ weights compare to saline-treated control mice. Splenocytes isolated from ABM-administered mice revealed similar levels of cellularity and proliferation compared to control mice, whereas they showed increased natural killer (NK) cell activity and decreased IL-4 and IL-12 production. Different from in vivo results, splenocytes isolated from normal mice showed increased proliferation and $INF-{\gamma}$ production following ABM treatment in vitro. In addition, ABM treatment enhanced macrophage proliferation and nitric oxide (NO) production in a dose-dependent manner. However, ABM had no effect on LPS-induced NO production. These results suggest that A. blazei modulates immune function by increasing NK cell activity and macrophage function.

본 연구에서는 신령버섯의 면역기능 개선 효과를 마우스를 이용한 동물 모델에서 면역기관의 무게와 세포증식, 자연살해세포 활성, 사이토카인 분비능을 측정하고 대식세포 증식과 활성을 측정하여 평가하였다. BALB/c 마우스에 저(4 mg/kg), 중(20 mg/kg), 고(100 mg/kg) 농도의 신령버섯을 21일간 경구로 투여하였다. 마우스를 희생하여 체중 및 면역장기 무게, 비장세포의 증식과 사이토카인 생성, 자연살해세포의 활성을 측정하였다. 그 결과 신령버섯은 마우스의 체중, 간, 비장, 흉선의 무게에 영향을 주지 않았으며, 비장세포의 증식에 유의한 효과가 없었다. 또한 비장세포의 IL-4과 IL-12 생성을 억제하였으며, 마우스 자연살해세포의 활성을 현저하게 증가시켰다. 정상 마우스에서 분리한 비장세포에 신령버섯을 처리한 in vitro 실험에서는 신령버섯 $5{\sim}100{\mu}g/mL$에서 농도 의존적으로 비장세포의 증식과 $IFN-{\gamma}$ 생성을 증가시켰다. 신령버섯은 대식세포인 RAW 264.7 세포의 증식을 $100{\mu}g/mL$ 농도까지 농도 의존적으로 증가시켰으며, 대식세포에 의한 NO의 생성을 농도 의존적으로 증가시켰다. 이상의 결과를 종합해 보면 신령버섯을 마우스에 3주간 투여하면 동물의 체중, 면역장기의 무게와 면역세포의 증식에는 영향을 미치지 않지만 자연살해세포의 활성을 70% 가량 증가시키며 IL-4와 IL-12의 생성을 억제한다. 정상 마우스에서 분리한 비장세포에 신령버섯을 처리하면 세포증식과 $IFN-{\gamma}$ 분비가 증가되고, 대식세포인 RAW 264.7 세포의 증식과 NO 생성이 증가된다. 따라서 신령버섯은 바이러스에 감염된 세포나 암세포를 죽이는 자연살해세포와 대식세포의 활성을 증가시켜 면역반응 조절에 중요한 역할을 할 것으로 기대된다.

Keywords

References

  1. Ito H, Shimura K, Itoh H, Kawade M. 1997. Antitumor effects of a new polysaccharide-protein complex (ATOM) prepared from Agaricus blazei (Iwade strain 101) "Himematsutake" and its mechanisms in tumor-bearing mice. Anticancer Res 17: 277-284.
  2. Choi WY, Park C, Lee JY, Kim GY, Park YM, Jeong YK, Lee WH, Choi YH. 2004. Anti-proliferative effects of water extract of Agaricus blazei Murill in human lung cancer cell line A549. J Korean Soc Food Sci Nutr 33: 1237-1245. https://doi.org/10.3746/jkfn.2004.33.8.1237
  3. Sung JM, Yoo YB, Cha DY. 1998. Mushroom. Kyohaksa, Seoul, Korea. p 3-10.
  4. Mizuno T, Hagiwara T, Nakamura T, Ito H, Shimura K, Sumiya T, Asakura A. 1990. Antitumor activity and some properties of water-soluble polysaccharides from "Himematsutake", the fruiting body of Agaricus blazei Murill. Agric Biol Chem 54: 2889-2896. https://doi.org/10.1271/bbb1961.54.2889
  5. Ebina T, Fujimiya Y. 1998. Antitumor effect of a peptideglucan preparation extracted from Agaricus blazei in a double- grafted tumor system in mice. Biotherapy 11: 259-265. https://doi.org/10.1023/A:1008054111445
  6. Mizuno TK. 1995. Bioactive biomolecules of mushrooms: Food function and medicinal effect of mushroom fungi. Food Rev Int 11: 5-21. https://doi.org/10.1080/87559129509541017
  7. Mizuno TK. 1995. Kawariharatake, Agaricus blazei Murill: medicinal and dietary effects. Food Rev Int 11: 167-172. https://doi.org/10.1080/87559129509541026
  8. Kawagishi H, Inagaki R, Kanao T, Mizuno T, Shimura K, Ito H, Hagiwara T, Nakamura T. 1989. Fractionation and antitumor activity of the water-insoluble residue of Agaricus blazei fruiting bodies. Carbohydr Res 186: 267-273. https://doi.org/10.1016/0008-6215(89)84040-6
  9. Mizuno M, Morimoto M, Minato K, Tsuchida H. 1998. Polysaccharides from Agaricus blazei stimulate lymphocyte T-cell subsets in mice. Biosci Biotechnol Biochem 62: 434-437. https://doi.org/10.1271/bbb.62.434
  10. Mizuno M, Minato K, Ito H, Kawade M, Terai H, Tsuchida H. 1999. Anti-tumor polysaccharide from the mycelium of liquid-cultured Agaricus blazei mill. Biochem Mol Biol Int 47: 707-714.
  11. Ohno N, Furukawa M, Miura NN, Adachi Y, Motoi M, Yadomae T. 2001. Antitumor beta glucan from the cultured fruit body of Agaricus blazei. Biol Pharm Bull 24: 820-828. https://doi.org/10.1248/bpb.24.820
  12. Dong Q, Yao J, Yang XT, Fang JN. 2002. Structural characterization of water-soluble ${\beta}$-D-glucan from fruiting bodies of Agaricus blazei Murill. Carbohydr Res 337: 1417-1421. https://doi.org/10.1016/S0008-6215(02)00166-0
  13. Itoh H, Ito H, Amano H, Noda H. 1994. Inhibitory action of a (1$\rightarrow$6)-${\beta}$-D-glucan-protein complex (FIII-2-b) isolated from Agaricus blazei Murill ("Himematsutake") on Meth A fibrosarcoma-bearing mice and its antitumor mechanism. Jpn J Pharmacol 66: 265-271. https://doi.org/10.1254/jjp.66.265
  14. Menoli RC, Mantovani MS, Ribeiro LR, Speit G, Jordao BQ. 2001. Antimutagenic effects of the mushroom Agaricus blazei Murrill extracts on V79 cells. Mutat Res 496: 5-l3. https://doi.org/10.1016/S1383-5718(01)00227-3
  15. Mizuno T, Inagaki R, Kanao T, Hagiwara T. 1990. Antitumor activity and some properties of water-insoluble hetero-glucans from "Himematsutake" the fruiting body of Agaricus blazei Murill. Agric Biol Chem 5: 2897-2905.
  16. Smith JE, Rowan NJ, Richard S. 2002. Medicinal mushrooms: a rapidly developing area of biotechnology for cancer therapy and other bioactivities. Biotechnol Lett 24: 1839-1845. https://doi.org/10.1023/A:1020994628109
  17. Wang H, Fu Z, Han C. 2013. The medicinal values of culinary- medicinal royal sun mushroom (Agaricus blazei Murrill). Evidence-Based Complement Altern Med 2013: 842619-842425.
  18. Choi JM, Koo SJ. 2000. Effects of ${\beta}$-glucan from Agaricus blazei Murill on blood glucose and lipid composition in db/db mice. Korean J Food Sci Technol 32: 1418-1425.
  19. Kuo YC, Huang YL, Chen CC, Lin YS, Chuang KA, Tsai WJ. 2002. Cell cycle progression and cytokine gene expression of human peripheral blood mononuclear cells modulated by Agaricus blazei. J Lab Clin Med 140: 176-187. https://doi.org/10.1067/mlc.2002.126717
  20. Takaku T, Kimura Y, Okuda H. 2001. Isolation of an antitumor compound from Agaricus blazei Murill and its mechanism of action. J Nutr 131: 1409-1413. https://doi.org/10.1093/jn/131.5.1409
  21. Sugjyama K, Saeki S, Tanaka A, Yoshida S, Sakamoto H, Ishiguro Y. 1992. Hypocholesterolemic activity of ningyotake (Polyporus confluences) mushroom in rats. J Jpn Soc Nutr Food Sci 45: 265-270. https://doi.org/10.4327/jsnfs.45.265
  22. Yoshiaki F, Hidekazu K, Koichi O, Ryo S, Takusaburo E. 1998. Tumoricidal activity of high molecular weight polysaccharides derived from Agaricus blazei via oral administration in the mouse tumor model. Nippon Shokuhim Kagaku Kaishi 45: 246-252. https://doi.org/10.3136/nskkk.45.246
  23. Bellini MF, Giacomini NL, Eira AF, Ribeiro LR, Mantovani MS. 2003. Anticlastogenic effect of aqueous extracts of Agaricus blazei on CHO-k1 cells, studying different developmental phases of the mushroom. Toxicol In Vitro 17: 465-469. https://doi.org/10.1016/S0887-2333(03)00043-2
  24. Martins de Oliveira J, Jordao BQ, Ribeiro LR, Ferreira da Eira A, Mantovani MS. 2002. Anti-genotoxic effect of aqueous extracts of sun mushroom (Agaricus blazei Murill lineage 99/26) in mammalian cells in vitro. Food Chem Toxicol 40: 1775-1780. https://doi.org/10.1016/S0278-6915(02)00156-4
  25. Ni WY, Wu MF, Liao NC, Yeh MY, Lu HF, Hsueh SC, Liu JY, Huang YP, Chang CH, Chung JG. 2013. Extract of medicinal mushroom Agaricus blazei Murill enhances the non-specific and adaptive immune activities in BALB/c mice. In Vivo 27: 779-786.
  26. Tang NY, Yang JS, Lin JP, Hsia TC, Fan MJ, Lin JJ, Weng SW, Ma YS, Lu HF, Shen JJ, Lin JG, Chung JG. 2009. Effects of Agaricus blazei Murill extract on immune responses in normal BALB/c mice. In Vivo 23: 761-766.
  27. Niu YC, Liu JC, Zhao XM, Su FQ, Cui HX. 2009. Immunostimulatory activities of a low molecular weight antitumoral polysaccharide isolated from Agaricus blazei Murill (LMPAB) in Sarcoma 180 ascitic tumor-bearing mice. Pharmazie 64: 472-476.
  28. Yuminamochi E, Koike T, Takeda K, Horiuchi I, Okumura K. 2007. Interleukin-12- and interferon-gamma-mediated natural killer cell activation by Agaricus blazei Murill. Immunology 121: 197-206. https://doi.org/10.1111/j.1365-2567.2006.02558.x
  29. Mishell BB, Shiigi SM. 1980. Selected methods in cellular immunology. 1st ed. WH Freeman and Co., San Francisco, CA, USA. p 4-27.
  30. Kim JW, Kim C. 2005. Inhibition of LPS-induced NO production by taurine chloramine in macrophages is mediated though Ras-ERK-NF-${\kappa}B$. Biochem Pharmacol 70: 1352-1360. https://doi.org/10.1016/j.bcp.2005.08.006
  31. Kim H, Lee T, Kwon Y, Son M, Kim C. 2012. Immunomodulatory activities of ethanol extract of Cordyceps militalis in immunocompromised mice. J Korean Soc Food Sci Nutr 41: 494-500. https://doi.org/10.3746/jkfn.2012.41.4.494
  32. Kang IS, Kim H, Lee TH, Kwon YS, Son M, Kim C. 2014. Effect of Cordyceps militaris on immune activity. Yakhak Hoeji 58: 81-90.
  33. Liu Y, Fukuwatari Y, Okumura K, Takeda K, Ishibashi K, Furukawa M, Ohno N, Mori K, Gao M, Motoi M. 2008. Immunomodulating activity of Agaricus brasiliensis KA21 in mice and in human volunteers. Evid Based Complement Alternat Med 5: 205-219. https://doi.org/10.1093/ecam/nem016
  34. Takimoto H, Wakita D, Kawaguchi K, Kumazawa Y. 2004. Potentiation of cytotoxic activity in naive and tumor-bearing mice by oral administration of hot-water extracts from Agaricus brazei fruiting bodies. Biol Pharm Bull 27: 404-406. https://doi.org/10.1248/bpb.27.404
  35. Lin JG, Fan MJ, Tang NY, Yang JS, Hsia TC, Lin JJ, Lai KC, Wu RS, Ma CY, Wood WG, Chung JG. 2012. An extract of Agaricus blazei Murill administered orally promotes immune responses in murine leukemia BALB/c mice in vivo. Integr Cancer Ther 11: 29-36. https://doi.org/10.1177/1534735411400314
  36. Sorimachi K, Akimoto K, Ikehara Y, Inafuku K, Okubo A, Yamazaki S. 2001. Secretion of TNF-${\alpha}$, IL-8 and nitric oxide by macrophages activated with Agaricus blazei Murill fractions in vitro. Cell Struct Funct 26: 103-108. https://doi.org/10.1247/csf.26.103
  37. Bernardshaw S, Hetland G, Ellertsen LK, Tryggestad AM, Johnson E. 2005. An extract of the medicinal mushroom Agaricus blazei Murill differentially stimulates production of pro-inflammatory cytokines in human monocytes and human vein endothelial cells in vitro. Inflammation 29: 147-153.
  38. Johnson E, Forland DT, Saetre L, Bernardshaw SV, Lyberg T, Hetland G. 2009. Effect of an extract based on the medicinal mushroom Agaricus blazei murill on release of cytokines, chemokines and leukocyte growth factors in human blood ex vivo and in vivo. Scand J Immunol 69: 242-250. https://doi.org/10.1111/j.1365-3083.2008.02218.x
  39. Higuchi M, Higashi N, Taki H, Osawa T. 1990. Cytolytic mechanisms of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages. J Immunol 144: 1425-1431.

Cited by

  1. 도토리의 일반성분 분석 및 도토리 추출물과 고지방 식이의 병행섭취 시 흰쥐 체내에서 혈중 지질인자와 사이토카인에 미치는 영향 vol.30, pp.1, 2015, https://doi.org/10.9799/ksfan.2017.30.1.148
  2. 카무트 분말가루의 영양성분 분석 및 고지방식이 섭취 시 카무트 분말가루의 첨가가 흰쥐 체내에서 혈중 대사 인자에 미치는 영향 vol.30, pp.6, 2015, https://doi.org/10.9799/ksfan.2017.30.6.1157
  3. Anti-inflammatory and immune-enhancing effects of enzyme-treated royal jelly vol.61, pp.2, 2015, https://doi.org/10.1007/s13765-018-0349-5
  4. Immune-enhancing effects of gamma-irradiated sericin vol.29, pp.7, 2020, https://doi.org/10.1007/s10068-020-00734-6
  5. UV 조사시간에 따른 원목표고당화물의 유용성분 및 항염증 효과 vol.18, pp.4, 2015, https://doi.org/10.14480/jm.2020.18.4.357