DOI QR코드

DOI QR Code

Effect of Grain Size and Drying Temperature on Drying Characteristics of Soybean (Glycine max) Using Hot Air Drying

열풍건조 시의 건조 온도와 입경에 따른 콩(Glycine max)의 건조 특성

  • Park, Hyeon Woo (Department of Food Science and Biotechnology, College of Agricultural and Life Science, Kangwon National University) ;
  • Han, Won Young (Department of Functional Crop, National Institute of Crop Science) ;
  • Yoon, Won Byong (Department of Food Science and Biotechnology, College of Agricultural and Life Science, Kangwon National University)
  • 박현우 (강원대학교 농업생명과학대학 식품생명공학 전공) ;
  • 한원영 (국립식량과학원 두류유지작물부) ;
  • 윤원병 (강원대학교 농업생명과학대학 식품생명공학 전공)
  • Received : 2015.08.13
  • Accepted : 2015.08.29
  • Published : 2015.11.30

Abstract

The effects of drying temperature on drying characteristics of soybeans with different grain sizes [6.0 (S), 7.5 (M), and 9.0 mm (L) (${\pm}0.2$)] with 25.0% (${\pm}0.8$) initial moisture content were studied. Drying temperatures varied at 25, 35, and $45^{\circ}C$, with a constant air velocity (13.2 m/s). Thin-layer drying models were applied to describe the drying process of soybeans. The Midilli-Kucuk model showed the best fit ($R^2$ >0.99). Based on the model parameters, drying time to achieve the target moisture content (10%) was successfully estimated. Drying time was strongly dependent on the size of soybeans and the drying temperature. The effective moisture diffusivity ($D_{eff}$) was estimated by the diffusion model based on Fick's second law. $D_{eff}$ values increased as grain size and drying temperature increased due to the combined effect of high temperatures and high drying rates, which promote compact tissue. Deff values of S, M, and L estimated were in the range of $0.83{\times}10^{-10}$ to $1.51{\times}10^{-10}m^2/s$, $1.17{\times}10^{-10}$ to $2.17{\times}10^{-10}m^2/s$, and $1.53{\times}10^{-10}$ to $2.95{\times}10^{-10}m^2/s$, respectively, whereas activation energy ($E_a$) based on drying temperature showed no significant differences in the size of soybeans.

입경과 건조 온도에 따른 수분 함량의 변화에 대한 연구를 수행하고 콩의 건조 특성을 박층 건조 모델을 적용하여 설명하였으며, Midilli-Kucuk 모델이 콩의 열풍건조를 서술하기에 가장 적합하였다($R^2$ >0.99). 입경을 달리한 S, M, L 군 모두에서 건조 온도가 증가할수록 건조 속도가 증가하였으며, 같은 건조 온도에서 입경이 증가할수록 건조 속도가 감소하였고, 초기 수분 함량(25%)으로부터 목표 수분 함량(10%)까지 건조시키기 위해 25, 35, $45^{\circ}C$ 건조에서 L군과 S군의 필요 건조 시간은 1,160분과 787분, 598분과 391분, 405분과 260분을 나타내어 건조 온도뿐 아니라 입경 역시 콩의 열풍건조를 위해 반드시 고려되어야 함을 확인하였다. 유효 수분확산도는 Fick's second law를 사용하여 평가되었다. 유효 수분확산도는 입경이 증가하고 건조 온도가 증가할수록 증가하였으며, 콩의 크기에 따른 콩의 온도 증가와 건조속도 증가에 의한 다공성 조직의 수축이 수분확산도의 차이를 유도하였음을 확인할 수 있었다. S, M, L 군의 유효 수분확산도는 각각 $0.83{\times}10^{-10}{\sim}1.51{\times}10^{-10}m^2/s$, $1.17{\times}10^{-10}{\sim}2.17{\times}10^{-10}m^2/s$, $1.53{\times}10^{-10}{\sim}2.95{\times}10^{-10}m^2/s$의 범위를 나타내었다. 이는 대부분의 식품 및 bioproduct의 수분확산도 범위 내에 속했다. 활성화 에너지($E_a$)는 건조 온도로부터 Arrhenius 식을 사용하여 평가되었다. 열풍건조에서 콩의 $E_a$는 24.73 kJ/mol의 값을 나타냈으며, 입경에 따른 유의적 차이는 없었다.

Keywords

References

  1. Kwon SH. 1972. Origin and importance of protein and oil of Korean soybean. Korean J Food Sci Technol 4: 158-161.
  2. Rafiee S, Keyhani A, Sharifi M, Jafari A, Mobli H, Tabatabaeefar A. 2009. Thin layer drying properties of soybean (Viliamz cultivar). J Agric Sci Technol 11: 289-300.
  3. Soponronnarit S, Swasdisevi T, Wetchacama S, Wutiwiwatchai W. 2001. Fluidised bed drying of soybeans. J Stored Prod Res 37: 133-151. https://doi.org/10.1016/S0022-474X(00)00015-1
  4. Doymaz I. 2006. Drying behavior of green beans. J Food Eng 69: 161-165.
  5. Overhults DG, White GM, Hamilton HE, Ross IJ. 1973. Drying soybeans with heated air. Trans ASAE 16: 112-113. https://doi.org/10.13031/2013.37459
  6. Sangkram U, Noomhorm A. 2002. The effect of drying and storage of soybean on the quality of bean, oil, and lecithin production. Drying Technol 20: 2014-2054.
  7. Wiriyaumpaiwong S, Soponronnarit S, Prachayawarakorn S. 2003. Soybean drying by two-dimensional spouted bed. Drying Technol 21: 1735-1757. https://doi.org/10.1081/DRT-120025506
  8. Afzal TM, Abe T. 1998. Diffusion in potato during far infrared radiation drying. J Food Eng 37: 353-365. https://doi.org/10.1016/S0260-8774(98)00111-3
  9. Hii CL, Law CL, Cloke M. 2009. Modeling using a new thin layer drying model and product quality of cocoa. J Food Eng 90: 191-198. https://doi.org/10.1016/j.jfoodeng.2008.06.022
  10. Nguyen M, Price WE. 2007. Air-drying of banana: Influence of experimental parameters, slab thickness, banana maturity and harvesting season. J Food Eng 79: 200-207. https://doi.org/10.1016/j.jfoodeng.2006.01.063
  11. Guine RPF, Fernandes RMC. 2006. Analysis of the drying kinetics of chestnuts. J Food Eng 76: 460-467. https://doi.org/10.1016/j.jfoodeng.2005.04.063
  12. Erbay Z, Icier F. 2009. A review of thin layer drying of foods: theory, modeling, and experimental results. Crit Rev Food Sci Nutr 50: 441-464.
  13. Henderson SM, Pabis S. 1961. Grain drying theory. I: Temperature effects on drying coefficients. J Agric Eng Res 6: 169-174.
  14. Lewis WK. 1921. The rate of drying of solid material. J Ind Eng Chem 13: 427-443. https://doi.org/10.1021/ie50137a021
  15. Midilli A, Kucuk H, Yapar Z. 2002. A new model for single-layer drying. Drying Technol 20: 1503-1513. https://doi.org/10.1081/DRT-120005864
  16. Page GE. 1949. Factors influencing the maximum rate of air drying shelled corn in thin-layers. MS Thesis. Purdue University, West Lafayette, IN, USA.
  17. Karathanos VT, Belessiotis VG. 1999. Application of a thinlayer equation to drying data of fresh and semi-dried fruits. J Agric Eng Res 74: 355-361. https://doi.org/10.1006/jaer.1999.0473
  18. Marinos-Kouris D, Maroulis ZB. 1995. Transfer properties in the drying of solids. In Handbook of Industrial Drying. Mujumdar AS, ed. Marcel Dekker, New York, NY, USA. p 133-155.
  19. Zogzas NP, Maroulis ZB, Marinos-Kouris D. 1996. Moisture diffusivity data compilation in foodstuffs. Drying Technol 14: 2225-2253. https://doi.org/10.1080/07373939608917205
  20. Tutuncu AM, Labuza TP. 1996. Effect of geometry on the effective moisture transfer diffusion coefficient. J Food Eng 30: 433-447. https://doi.org/10.1016/S0260-8774(96)00028-3
  21. Dissa AO, Desmorieux H, Savadogo PW, Segda BG, Koulidiati J. 2010. Shrinkage, porosity and density behavior during convective drying of spirulina. J Food Eng 97: 410-418. https://doi.org/10.1016/j.jfoodeng.2009.10.036
  22. Maskan A, Kaya S, Maskan M. 2002. Hot air and sun drying of grape leather. J Food Eng 54: 81-88. https://doi.org/10.1016/S0260-8774(01)00188-1
  23. Moon JH, Kim MJ, Chung DH, Pan CH, Yoon WB. 2014. Drying characteristics of sea cucumber (Stichopus japonicas Selenka) using far infrared radiation drying and hot air drying. J Food Process Preserv 38: 1534-1546. https://doi.org/10.1111/jfpp.12113
  24. Johnson PNT, Brennan JG, Addo-Yobo FY. 1998. Air-drying characteristics of plantain (Musa AAB). J Food Eng 37: 233-242. https://doi.org/10.1016/S0260-8774(98)00076-4
  25. Srikiatden J, Roberts JS. 2006. Measuring moisture diffusivity of potato and carrot (core and cortex) during convective hot air and isothermal drying. J Food Eng 74: 143-152. https://doi.org/10.1016/j.jfoodeng.2005.02.026
  26. Rafiee S, Sharifi M, Keyhani A, Omid M, Jafari A, Mohtasebi SS, Mobli H. 2010. Modeling effective moisture diffusivity of orange slice (Thompson Cv.). Int J Food Prop 13: 32-40. https://doi.org/10.1080/10942910802144345
  27. Thuwapanichayanan R, Prachayawarakorn S, Kunwisawa J, Soponronnarit S. 2011. Determination of effective moisture diffusivity and assessment of quality attributes of banana slices during drying. LWT-Food Sci Technol 44: 1502-1510. https://doi.org/10.1016/j.lwt.2011.01.003
  28. Chua KJ, Chou SK. 2005. A comparative study between intermittent microwave and infrared drying of bioproducts. Int J Food Sci Technol 40: 23-39. https://doi.org/10.1111/j.1365-2621.2004.00903.x
  29. Doymaz I. 2007. Air-drying characteristics of tomatoes. J Food Eng 78: 1291-1297. https://doi.org/10.1016/j.jfoodeng.2005.12.047
  30. Shi J, Pan Z, McHugh TH, Wood D, Hirschberg E, Olson D. 2008. Drying and quality characteristics of fresh and sugar- infused blueberries dried with infrared radiation heating. LWT-Food Sci Technol 41: 1962-1972. https://doi.org/10.1016/j.lwt.2008.01.003
  31. Sharma GP, Verma RC, Pathare PB. 2005. Thin-layer infrared radiation drying of onion slices. J Food Eng 67: 361-366. https://doi.org/10.1016/j.jfoodeng.2004.05.002
  32. Andres A, Bilbao C, Fito P. 2004. Drying kinetics of apple cylinders under combined hot air-microwave dehydration. J Food Eng 63: 71-78. https://doi.org/10.1016/S0260-8774(03)00284-X
  33. Hassini L, Azzouz S, Belghith A. 2004. Estimation of the moisture diffusion coefficient of potato during hot-air drying. Proceedings of the 14th International Drying Symposium. Sao Paulo City, Brazil. p 1488-1495.
  34. Kiranoudis CT, Maroulis ZB, Marinos-Kouris D. 1995. Heat and mass transfer model building in drying with multiresponse data. Int J Heat and Mass Transfer 38: 463-480. https://doi.org/10.1016/0017-9310(94)00166-S
  35. Senadeera W, Bhandari BR, Young G, Wijesinghe B. 2003. Influence of shapes of selected vegetable materials on drying kinetics during fluidized bed drying. J Food Eng 58: 277-283. https://doi.org/10.1016/S0260-8774(02)00386-2

Cited by

  1. (L.)] using novel multilayered mass transfer simulation with an image analysis pp.1532-2300, 2018, https://doi.org/10.1080/07373937.2018.1493691
  2. Development of a Novel Image Analysis Technique to Detect the Moisture Diffusion of Soybeans [Glycine max (L.)] During Rehydration Using a Mass Transfer Simulation Model vol.11, pp.10, 2018, https://doi.org/10.1007/s11947-018-2150-1
  3. 열풍건조기의 건조성능과 공기령의 상관관계 연구 vol.30, pp.7, 2015, https://doi.org/10.6110/kjacr.2018.30.7.321
  4. Microwave drying characteristics of squash slices vol.45, pp.4, 2015, https://doi.org/10.7744/kjoas.20180091
  5. Storage characteristics of two‐spotted cricket ( Gryllus bimaculatus De Geer) powder according to drying method and storage temperature vol.50, pp.11, 2020, https://doi.org/10.1111/1748-5967.12472