참고문헌
- Abbott, I. H., 1959. Theory of wing sections, including a summary of airfoil data. New York: Courier Dover Publications.
- Bachmayer, R., Leonard, N.E., Graver, J., Fiorelli, E., Bhatta, P. and Paley, D., 2004. Underwater gliders: Recent developments and future applications. Proceedings of IEEE International Symposium Underwater Technology, Taipei, April 2004, pp.195-200.
- Center, N.L.R., 2014. Turbulence modeling resource.[Online]. http://turbmodels.larc.nasa.gov/. NASA Langley Research Center.
- Crane, D., 2012. Dictionary of aeronautical terms. New York:Aviation Supplies & Academics, Incorporated.
- Eriksen, C.C., Osse, T.J., Light, R.D., Wen, T., Lehman, T.W., Sabin, P.L., Ballard, J.W. and Chiodi, A.M., 2001. Seaglider: A long-range autonomous underwater vehicle for oceanographic research. IEEE Journal of Oceanic Engineering, 26, pp.424-436. https://doi.org/10.1109/48.972073
- Farin, G. and Kim, H.M.S., 2002. Handbook of computer aided geometric design. North-Holland, Amsterdam, 18, pp.771-795.
- Golberg, D.E., 1989. Genetic algorithms in search, optimization, and machine learning. California:Addion wesley.
- Graver, J.G., 2005. Underwater gliders: dynamics, control and design. Ph. D. Thesis. Princeton University.
- Hildbrand, J.A., Spain, D., Gerald, L. and Rosh, M.A., 2011. Glider-based passive acoustic monitoring techniques in the southern california region. New Jersey: DTIC Document.
- Huggins, A. and Packwood, A.R., 1995. Wind tunnel experiments on a fully appended laminar flow submersible for oceanographic survey. Ocean Engineering, 22(2), pp.207-221. https://doi.org/10.1016/0029-8018(94)00005-0
- Jenkins, S.A., Humphreys, D.E., Sherman, J., Osse, J., Jones, C., Leonard, N., Graver, J., Bachmayer, R., Clem, T. and Carroll, P., 2003. Underwater glider system study. Arlington: Scripps Institution of Oceanography.
- Jeong, S., Murayama, M. and Yamamoto, K., 2005. Efficient optimization design method using kriging model. Journal of Aircraft, 42(2), pp.413-420. https://doi.org/10.2514/1.6386
- Li, P., Zhang, B., Chen, Y., Yuan, C. and Lin, Y., 2012. Aerodynamic design methodology for blended wing body transport. Chinese Journal of Aeronautics, 25(4), pp.508-516. https://doi.org/10.1016/S1000-9361(11)60414-7
- Liebeck, R.H., 2004. Design of the blended wing body subsonic transport. Journal of Aircraft, 41(1), pp.10-25. https://doi.org/10.2514/1.9084
- Ma, Z., Zhang, H., Zhang, N. and Ma, D.M., 2006. Study on energy and hydrodynamic performance of the underwater glider. Journal of Ship Mechanics, 10, pp.53-60.
- Martin, J.D., 2005. Use of kriging models to approximate deterministic computer models. AIAA Journal, 43(4), pp.853-863. https://doi.org/10.2514/1.8650
- Mohr, B., Paulus, D., Baier, H. and Hornung, M., 2012. Design of a 450-passenger blended wing body aircraft for active control investigations. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of aerospace engineering, 226, pp.1513-1522. https://doi.org/10.1177/0954410011426031
- ONR, 2006. Liberdade XRAY advanced underwater glider [Online]. https://www.onr.navy.mil/media/extra/fact_sheets/advanced_underwater_glider.pdf. U.S. Office of Naval Research.
- Peigin, S. and Epstein, B., 2006. Computational fluid dynamics driven optimization of blended wing body aircraft. AIAA Journal, 44(11), pp.2736-2745. https://doi.org/10.2514/1.19757
- Potsdam, M.A., Page, M.A. and Liebeck, R.H., 1997. Blended wing body analysis and design. 15th AIAA applied aerodynamics conference, California, June 1997, pp.799-805.
- Prautzsch, H., Boehm, W. and Paluszny, M., 2002. Bezier and B-spline techniques. New York: Springer.
- Sherman, J., Davis, R.E., Owens, W.B. and Valdes, J., 2001. The autonomous underwater glider "spray". IEEE Journal of Oceanic Engineering, 26, pp.437-446. https://doi.org/10.1109/48.972076
- Stevenson, P., Furlong, M. and Dormer, D., 2009. AUV design: shape, drag and practical issues. Sea Technology, 50, pp. 41-44.
- Stommel, H.M., 1989. The slocum mission. Oceanus, 32, pp.93-96.
- Webb, D.C., Simonetti, P.J. and Jones, C.P., 2001. Slocum: an underwater glider propelled by environmental energy. IEEE Journal of Oceanic Engineering, 26, pp.447-452. https://doi.org/10.1109/48.972077
- Whie, F.M., 2008. Fluid mechanics. 4th. New York: McGraw-Hill.
피인용 문헌
- Optimal design of hydraulic support landing platform for a four-rotor dish-shaped UUV using particle swarm optimization vol.8, pp.5, 2015, https://doi.org/10.1016/j.ijnaoe.2016.05.007
- A novel wake energy reuse method to optimize the layout for Savonius-type vertical axis wind turbines vol.121, pp.None, 2015, https://doi.org/10.1016/j.energy.2017.01.004
- Structural optimization of an underwater glider with blended wing body vol.9, pp.9, 2015, https://doi.org/10.1177/1687814017723279
- Shape optimization of blended-wing-body underwater glider by using gliding range as the optimization target vol.9, pp.6, 2017, https://doi.org/10.1016/j.ijnaoe.2016.12.003
- Experimental and Numerical Study on Hydrodynamic Performance of an Underwater Glider vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/8474389
- Layout optimization of landing gears for an underwater glider based on particle swarm algorithm vol.70, pp.None, 2018, https://doi.org/10.1016/j.apor.2017.11.008
- Hydrofoil optimization of underwater glider using Free-Form Deformation and surrogate-based optimization vol.10, pp.6, 2015, https://doi.org/10.1016/j.ijnaoe.2017.12.005
- Design and Optimization of a Blended-Wing-Body Underwater Glider vol.491, pp.None, 2019, https://doi.org/10.1088/1757-899x/491/1/012001
- Modeling and Motion Simulation for A Flying-Wing Underwater Glider with A Symmetrical Airfoil vol.33, pp.3, 2015, https://doi.org/10.1007/s13344-019-0031-7
- Parametric Geometric Model and Shape Optimization of Airfoils of a Biomimetic Manta Ray Underwater Vehicle vol.24, pp.3, 2015, https://doi.org/10.1007/s12204-019-2076-4
- Performance study of a simplified shape optimization strategy for blended-wing-body underwater gliders vol.12, pp.None, 2020, https://doi.org/10.1016/j.ijnaoe.2020.05.002
- Shape optimisation of blended-wing-body underwater gliders based on free-form deformation vol.15, pp.3, 2015, https://doi.org/10.1080/17445302.2019.1611989
- A Double-Stage Surrogate-Based Shape Optimization Strategy for Blended-Wing-Body Underwater Gliders vol.34, pp.3, 2015, https://doi.org/10.1007/s13344-020-0036-2
- Shape optimization of a blended-wing-body underwater glider using surrogate-based global optimization method IESGO-HSR vol.103, pp.3, 2020, https://doi.org/10.1177/0036850420950144
- Hydrodynamic analysis of an underwater glider wing using ANSYS fluent as an investigation tool vol.45, pp.p6, 2021, https://doi.org/10.1016/j.matpr.2021.02.127
- An Efficient Surrogate-Based Optimization Method for BWBUG Based on Multifidelity Model and Geometric Constraint Gradients vol.2021, pp.None, 2015, https://doi.org/10.1155/2021/6939863
- Hull optimization of an underwater vehicle based on dynamic surrogate model vol.230, pp.None, 2015, https://doi.org/10.1016/j.oceaneng.2021.109050
- Shape Optimization for A Conventional Underwater Glider to Decrease Average Periodic Resistance vol.35, pp.5, 2021, https://doi.org/10.1007/s13344-021-0064-6