
265

Effects of digestion temperatures and loading amounts on methane 
production from anaerobic digestion with crop residues
Joung Du Shin1,♠, Sang Won Park2, Sun-Il Lee1, Hyunook Kim3, Sang Ryong Lee4,♠ and Myoung Suk Kim5

1Department of Climate Change and Ecology, Agro-Environmental Division, National Academy of Agricultural Science, RDA, 
Wanju 55365, Korea
2R&D Performance Evaluation and Management Division, Research Policy Bureau, RDA, Wanju 55365, Korea
3Department of Environmental Engineering, University of Seoul, Seoul 02504, Korea
4Department of Animal Biotechnology and Environment, National Institute of Animal Science, RDA, Wanju 55365, Korea
5Department of Soil Management, Agro-Environmental Division, National Academy of Agricultural Science, RDA, Wanju 55365, Korea

Key words: cumulative methane yield, Gompertz equation, methane production

Received 26 June 2015
Accepted 7 August 2015

*Corresponding Author
E-mail: jdshin1@korea.kr,
E-mail: soilsang@korea.kr
Tel: +82-63-238-2494,
Tel: +82-63-238-7415

Open  Access

pISSN: 1976-4251   
eISSN: 2233-4998

Carbon Letters Vol. 16, No. 4, 265-269 (2015)
Note

Article Info

Copyright © Korean Carbon Society     

http://carbonlett.org

Due limited natural resources and increased greenhouse gas emissions, substitution of 
fossil fuels with renewable bio-energy has been encouraged United Nations Framework 
Convention on Climate Change (UNFCCC). According to the United Nations, by the 
year 2050, up to 77% of the world’s energy demand could be supplied by renewable 
energy sources [1]. However, because biomass has gained economic interest, further 
expansion of biogas production is increasingly dependent on the exploitation of new 
sources of biomass.

Biomass is composed of carbon-rich materials including plant residues, animal excre-
ments and bio-waste from households and industry [2]. Unused or discarded biomass resi-
dues from agriculture are a potential energy resource, even though those materials can be a 
source of green house gas (GHG) emissions causing climate change. The potential energy 
production from crop residues and animal wastes is globally estimated at about 34 EJ (exa-
joule = 1018 joules) out of a total 70 EJ [3]. Biomass is a renewable energy resource derived 
from all organic materials produced by both human and natural activities. It is a complex 
mixture of carbohydrates, fats and proteins. Plant residues are regarded as the main source 
of biomass because they usually contain 40%-50% cellulose, 20%-35% hemi-cellulose, and 
15%-30% lignins. Therefore, biomasses like the plant residues of grapeseed, rice, barley and 
wheat could serve as alternative bio-energy resources. 

The grand total of generated waste from livestock, agro-industrial waste and crop res-
idues is estimated at 58,010 kt yr-1 in Korea. Potential methane production from agricul-
tural wastes including livestock, crop residues and agro-industrial wastes is estimated 
at 436 kt yr-1 [4]. Anaerobic digestion (AD) for methane production using crop residues 
in the agricultural sector is becoming necessary in areas with limited natural resources 
like Korea. Over the past decade, AD of biomass originating from agriculture to produce 
methane gas has attracted much attention from government authorities, academia, and 
industry in Korea. 

AD is a biological process that converts the solid or liquid biomass into a gas in the 
absence of oxygen. Many studies on AD in Korea have focused on swine manure and food 
wastes as substrates [5-6]. AD has many environmental benefits including the production 
of a renewable energy carrier, nutrient recycling and the reduction of waste volumes [7-
9]. Therefore, different types of organic wastes such as sewage sludge, industrial wastes, 
slaughterhouse waste, fruit and vegetable wastes, manure and agricultural biomass have 
been successfully digested under anaerobic conditions. Each of these wastes has been di-
gested separately or co-digested with other wastes [10-12]. 

However, not many papers have been published on the mono-digestion of crop residues 
[13-16], while thermophilic AD has been mainly the subject of more recent studies. 

The organic loading rate and hydrologic retention time (HRT) are two major parameters 
used for sizing a digester, and their optimum values are specific to each substrate as well as 
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At the same time, the concentration of methane in the produced 
gases was determined. The methane content in the biogas was 
measured with gas chromatography (GC; Varian CP3800, USA) 
and a thermal conductivity detector and a 1.0 m × 2 mm stainless 
steel packed column with N2 gas as a carrier. The temperatures 
of the detector and column were maintained at 189°C and 40°C, 
respectively.

 In general, biological phenomena are seldom clearly ex-
plained by building a mechanistic model. In this case, respond-
ing to a surface methodology, an empirical model or a statistical 
analysis can be formulated to elucidate the basic mechanisms 
underlying a complex system and thus provide better guidance 
for the process design and control [21]. In this study, the effects 
of the loading amounts and crop residues at each digestion tem-
perature on methane production of an anaerobic digester were 
analyzed with a modified Gompertz model [22] shown below 
eq (1):

	 (1)

, where Mp is the cumulative methane production (mL); Pm is the 
ultimate methane production (mL); Rm is the methane produc-
tion rate (mL d-1); x0 is the lag-phase time (d); x is the time (d), 
and e is the exponential 1. 

All the parameters in the above equation were estimated by 
performing non-linear regression analysis with a Newtonian al-
gorithm to minimize the sum of the squared errors (SSE) be-
tween the experiment and estimation. How well these param-
eters fit was validated by SSE, coefficient of determination (R2), 
standard errors (SE), 95% confidence limits, t-values and F-
values using SigmaPlot version 11.0 (Systat Software Inc., San 
Jose, CA, USA). 

The modified model provided in eq (1) was applied to fit the 
cumulative methane production profiles. Additionally, how well 
these parameters fit was validated with the model R2 values. 
The cumulative methane production curves from the two crop 
residues and three loading rates at each incubation temperature 
were well described by eq (1). All the model R2 values were less 
than 0.01 (Tables 1 and 2), suggesting that the modified model is 
statistically significant. Although the hydrogen production curve 

the digester temperature [17]. A temperature phased anaerobic 
digestion (TPAD) system has been shown to be a reliable and 
effective means of sludge stabilization that achieves bioconver-
sion and methane production rates higher than existing meso-
philic anaerobic systems [18]. 

 Therefore, the current study was done to determine the opti-
mum loading rate and to predict the maximum potential meth-
ane production during mesophilic and thermophilic AD with 
crop residues. The work was considered as a pilot scale test for 
various temperatures and loading amounts in a continuously op-
erating phased anaerobic digestion system. 

 Seeding sludge was taken from an anaerobic digester in a 
local waste water treatment plant. Once collected, the seeding 
sludge was stored in a refrigerator at 4°C for one week before 
its volatile solids (VS) content was analyzed. Then, it was pre-
heated to 35°C for 24 h, and inoculated with substrates. The VS 
concentration of the seed microorganisms was 0.05%. 

 Rice and wheat straws were used as substrates in this study. 
The straws from the experimental field of the National Academy 
of Agriculture Sciences (NAAS) were ground with an electric 
blender and passed through a 2 mm sieve. Substrates were added 
to 200 mL of microbial seeding sludge to give final biomass 
loading rates of 1, 3 and 5% (w v-1). The physicochemical pa-
rameters, pH, total suspended solids (TSS), VS, total nitrogen 
(T-N), and total phosphorus (T-P), were determined according to 
Standard Methods [19]. The physicochemical characteristics of 
the substrate are presented in Table 1. 

 The experimental design was a randomized factorial design 
with three replications. The main plots were the loading amounts 
of the crop residues: 1%, 3%, and 5% based on the dry weight. 
The sub-plots were the incubation temperatures: thermophilic 
(55°C) and mesophilic (35°C) AD. After placing the substrate 
and microbial seed sludge in the bottles, the headspace of each 
bottle was flushed with N2 gas for two minutes, degassed after 
three hours with a glass syringe, and sealed tight with a clamp. 
The bottles were then placed on a shaker at 40 rpm at digestion 
temperatures of 35°C and 55°C. 

The biogas production was periodically measured with a 20-
200 mL glass syringe during the entire digestion periods [20]. 

Table 1. Physicochemical characteristics of the microbial seed 
and substrates used in this study

Parameter Seed of 
microorganism Rice straw Wheat straw

 pH  8.00 - -

EC (mS cm-1) 11.53 - -

 SS (mg kg-1) 5.9 1, 3, 5 1, 3, 5

 VS (mg kg-1) 0.5 - -

 TC (mg kg-1) - 393.6 421.6

 TN (mg kg-1) 7.5  3.6  4.6

 TP (mg L-1)  176.58 - -

EC: electrical conductivity, SS: suspended solid, VS: volatile solid, TC: 
total carbon, TN: total nitrogen, TP: total phosphorus.

Table 2. Model parameters identified from the fitted model of 
the methane production profiles during a mesophilic digestiona)

Feeding 
stock

Loading 
amount (%) Pm Rm X0 R2

Rice 
straw

1 245.49 8.15 0 0.988

3 163.26 4.11 0.35 0.993

5 216.76 5.35 0.23 0.986

Wheat 
straw

1 307.84 17.73 1.81 0.985

3 282.98 10.75 2.78 0.997

5 214.43 4.64 49.30 0.978
a)Pm is the ultimate methane production (mL), Rm is the methane pro-
duction rate (mL d-1), X0 is the lag-phase time (d), and R2 is the coef-
ficient of determination. 
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g-1 of methane production for the rice straw substrate and 248.3 
mL g-1 for the wheat straw substrate with a 1% loading amount 
(Fig. 2). The cumulative methane production from the reactor 
with only the wheat straw substrate was greater than that of the 
rice straw substrate at both digestion temperatures, but the load-
ing rates for both crop residues did not have a consistent trend. 
The higher cumulative methane production from the reactor 
with the wheat residue could be attributable to the higher carbon 
content of the raw material (Table 1). 

From the biogas production data, the current methane con-
tents were 6.5% lower for the mesophilic AD and 17.9% for the 
thermophilic AD than the results reported by Lianhua et al. [28]. 
Wheat and rice straw substrates without pretreatment showed 
biogas production yields of 18.8 and 14.0 mL g-1 VS, respec-
tively, with a 4.4% VS substrate concentration at 37°C, which 
was 1.7 and 1.2 times lower than the current results in dry unit 
weight [29]. Chandra et al. [30] claimed that the maximum bio-
gas production yield occurred only during the initial 20 d of the 
digestion period for the rice straw substrate. However, the maxi-
mum biogas yield was observed within 10 d, and HRT lasted 
twice as long when compared with our result.

was previously fitted to a modified Gompertz equation, which 
was used as a suitable model for describing the hydrogen pro-
duction in a batch system [23-25], it was also observed that the 
Gompertz model was appropriate to predict methane production 
with crop residues at different loading amounts and digestion 
temperatures.

Fig. 1 shows that the cumulative methane production poten-
tial varied from 163.3 to 307.8 mL g-1 during a mesophilic AD 
and from 105.3 to 250.0 mL g-1 during a thermophilic AD with 
different applied loading amounts. These values were higher 
than the reported maximum values from co-digestion with cow 
manure and crop residues as grass, sugar beet top and straw: 
268, 229, and 213 mL g-1 VS fed, respectively [26]. Moreover, 
these values are comparable to the methane yields of 160-260 
mL g-1 VS for the batch degradation of wheat straw (values de-
pend on the experimental conditions and particle size) presented 
in a review by Gunaseelan [27]. 

The maximum cumulative methane production potentials 
were 245.5 mL g-1 for a rice straw substrate and 307.8 mL g-1 for 
a wheat straw substrate during a mesophilic AD (Fig. 1). During 
a thermophilic AD, the results showed a potential of 250.0 mL 

Fig. 1. Fitting results of the Gompertz model to the cumulative methane production profile during a mesophilic digestion according to different crop 
residues and loading amounts.

Fig. 2. Fitting results of the Gompertz model to the cumulative methane production profile during a thermophilic digestion with different crop residues 
and loading rates. 
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