스마트팜 기술동향 및 전망

Trends and Prospects of Smart Farm Technology

김관중 (G.J. Kim) 융합기술개발연구팀 책임연구원
이지현 (J.D. Huh) 융합기술개발연구팀 팀장

* 본 연구는 ETRI 내부 연구사업의 일환으로 수행되었음(SYC1130, 융합기술연구소 개방형 연구협력체계 활성화 사업).

우리나라 농업 경쟁력을 높이기 위한 방안으로 스마트팜 기술에 대한 논의가 활발하다. 현재 스마트팜은 외식시스템 도입을 통해 신도농가를 중심으로 파프리카, 딸기, 토마토 등의 재배에 일부 적용되고 있고, 농림수산식품부는 사연사업을 통한 확산 의지를 피력하고 있다. 그러나 우리 식청은 스마트팜 주요 장비의 외산 의존에 따른 구조적 한계(경제성 및 유지보수성 취약)에 봉착하고, 농가의 실질적 소득증가 기여도가 낮은 수준에 머물러 있다. 따라서 본고는 최근 국내외 스마트팜 기술의 현황 및 문제점을 분석하여 이를 기반으로 향후 발전방향에 대해 언급하고자 한다. 스마트팜 주요 장비의 국산화 및 표준화, 기공·유통·외식·관광·레저 등 2/3차 산업 및 기상·물류강 등 타 산업과의 융복합을 통한 새로운 부가가치 창출이 핵심사항으로 여겨진다.
1. 배경 및 필요성

현재 우리나라 농업은 농촌인구의 감소 및 고령화, 과물자급 하락, 농가소득 정체, 한반도 기후변화 심화 등의 어려움을 겪고 있다. 농업 인구의 감소 및 고령화 추세가 두려워 2014년 농림어업조사 결과에 따르면 농가 고령화율은 2014년 12월 기준 39.1%로 전년보다 1.8%포인트 높아졌다. 고령화율은 2010년 31.8%에서 매년 2%포인트가량씩 빠르게 높아지고 있다. 전체 인구 고령화율(12.7%)의 3배를 넘는 수치다. 농가 경영주 평균연령도 2014년 66.5세며, 농림인구 기준인 65세를 넘어선 2013년보다 1.1세 늘어졌다. 농가 경영주의 39.7%는 70세 이상이고 60대 29.5%, 50대 22.5% 등이다[1].

또한, 수입 농산물은 매년 증가하고 있고 전체 산업에서 농업의 비중은 계속 낮아지고 있다. 국내 총생산 중 농림어업이 차지하는 비중은 2000년 4.4%에서 2014년 2.1%로 급감하였고, 국내 농성지도 2000년 19.0%에서 2014년 17.3%로 지속적인 하락 추세에서 농업 활성화를 위한 대책 마련이 시급한 상황이다. 우리나라의 곡물자급률은 2014년 24.0%에 불과하여 경제협력개발기구(OECD) 회원국에 34개국 중 32번째로 뒤졌다. 곡물 자급률은 1980년 56%, 1990년 43.1%로 하락했고, 2009년 29.6%로 떨어진 뒤 2010년에 마르고 있다. 2014년 기준 농 자급률은 96.7%였지만 보리(24.8%), 밀(0.7%), 옥수수(0.8%), 콩(11.3%) 등 대부분 수입에 의존하고 있다[2][3].

따라서 상기 언급한 노동인구 및 농지 감소, 농업 경쟁력 약화, 한반도 기후 이변 등의 문제점을 극복하기 위한 노력의 일환으로 Information & Communication Technology(ICT) 기반 스마트 농업 기술 도입이 추진되고 있다. 최근 농업 분야의 기워드는 스마트, 고품질(신 선도, 맞등), 생산성, 효율성 등으로 볼 수 있다. 농업과 ICT산업과의 융합을 통해 농업 분야의 생산성, 편리성, 효율성을 증대하고 작물의 품질 향상 노력의 기업이고 있다. 즉 농업과 ICT기술 간의 융합을 통해 농업 생산·가공·유통·소비의 가치사슬 전반에서 정보를 수집·가공·분석 활용하여 각 단계의 효율성을 향상하고 있다. 과거의 단순 생산 중심의 농업이 ICT와 융합하여 고부 가가치 산업으로 확대 발전하고 미래 성장 산업화를 추 진하고 있다.

비록 농업+ICT융합 기술은 타 산업보다 아직 초보적인 단계에 머물러 있지만, 최근 가장 활발한 연구개발이 추진되고 있는 분야로 스마트팜으로 간주하고 있다. 스마트팜은 (그림 1)과 같은 시스템 구성으로 온실의 환경과 작품의 생육상태에 대한 실시간 측정 정보를 기반으로 최적의 환경조건 유지 및 양적 제어를 통해 작물의 생산성 및 품질을 향상시키고자 하는 농업ICT융합 기술이다. 더 넓은 의미의 스마트팜은 도시 농업, 시설원예, 축산 등 농업 분야에서 농산물 생산·유통·소비의 전주기적 과정을 농업ICT융합 기술 적용을 통한 농촌의 삶의 질 향상을 도모하는 농업 형태까지도 포함한다.

현재 우리나라의 스마트팜은 선진국에 비하면 겉은마 단계에 불과하다. 유럽을 비롯한 일본이 자체 개발 시스템을 적용해 재배작물 품목을 확대하고 생산성 향상 및 경비 절감에 초점을 맞추고 있지만, 우리나라에는 주요 장비와 소재에 의존하고 있고, 재배작물 및 생산환경관리 기술이 미흡하여 단위 면적당 작물(예, 토마토) 생산량

(그림 1) 스마트팜 시스템의 기본 구성도

2 전자통신동향분석 제30권 제5호 2015년 10월
이 네덜란드의 절반 수준에 머물러 있는 것으로 분석되고 있다. 따라서 향후 지속적인 연구개발을 통해 주요 장비의 국산화, 국내 기후/환경 조건에 적합한 한국형 스마트팜 기술의 확보가 시급하다.

II. 국내외 정책 및 시장동향

1. 국내 정책동향

세계 원예산업을 주도하고 있는 네덜란드는 산화연합력을 통해 그린포트(green ports)와 시드밸리(Seed Valley)라는 원예업 클러스터 단지를 조성하여 기업, 연구기관, 정부가 산-학-연 협업을 이루며 기술혁신을 추진하고 물류를 비롯한 기반시설을 제공하고 있다.

일본은 정부 차원에서 농업ICT융합 기술 연구개발을 적극적으로 지원하고 있다. 최근 이래 정부는 농업의 국내 경쟁력 향상을 통하여 현재 약 4,400억 엔의 농산물 수출액을 2020년 1조 엔으로 확대할 계획을 밝혔다. 농림수산성은 '농업계와 정책계의 협력에 의한 철단 농업 모델 확립 실증사업'을 2014년에 확대하여 농업에 ICT 기술을 적용하여 저비용-고효율의 생산체계 구축을 위한 정부와 기업의 공동 프로젝트 대상으로 정부조금을 지원하고 있다.[6] 또한, 일본 정부는 2009년에 '식품공장 규제 확대 종합대책'을 마련, 지속적인 투자를 통해 2013년 3월 기준으로 전국에 304개소의 식품공장(33ha 계적면적)을 설치하여 일반 운영보다 50% 정도의 생산량 증대 효과를 보고 있다. 식물공장의 지속적인 보급 확대를 위해 농림수산성은 실증-전시 사업과 설치비 보조를 하는 데다 지원사업 등을 추진하고, 경제 산업성은 식물공장 기반기술 연구를 지원하고 있다.

미국은 농업 분야의 성장이 식량안보에 직접적인 해결책이 된다는 인식 하에 90년대부터 장기 지속 가능한 농업 및 환경 촉진을 주요 전략으로 설정하고 있다. 그 영향으로 미국 농업은 양농규모가 크고 첨단기술의 적용이 확대되어 농산물 생산량 및 교역량 측면에서 세계적으로 높은 비중을 차지한다. 농무부(U.S Department of Agriculture)를 중심으로 농업ICT융합 R&D 정책을 추진하고 있고, 주로 장기적이고 고위험·고수익(High Risk, High Return) 과제를 추진하고 있다.

2. 국내 정책동향

우리나라는 과학기술기반 농업혁신 전략 보고서(제16차 국가과학기술정책연구대회의 2014, 12)를 통해 한국형 스마트팜을 개발하여 2017년까지 토지면적 1,983㎢(약 600㎢) 이하 영세 농가 8,000가구 대상, 농가당 300만 원 대의 저가형으로 제공한다는 계획을 제시하였다. 이에 발맞추어 농업진흥청은 2014년부터 2017년까지 3년 간 ICT융합 기술개발을 위해 145억원을 투자하고, ICT기반 스마트팜 시범농장도 1개소씩 옵션 계획을 발표하였다.[7] 또한, 최근 농림축산식품부는 스마트팜 지원을 위해 예산 216억원을 확보하여 시설비 350㏊와 중종장 130㏊에 투입하고, 농가당 500평원 정도가 드는 저가형 스마트팜 보다는 비날하우스 5개동 기존 2,000만원의 시설비가 소요되는 고급형 스마트팜 보급에 집중한다고 밝혔다(8). 고급형 스마트팜의 경우 운도유지, 이산화탄소 제거, 생산단계별 영양소 공급 등을 조절할 수 있어 생산성의 효과가 클 것으로 본다.

3. 국내외 시장동향

가. 국내 시장동향

최근 통계청이 발표한 ‘세계과 한국의 인구현황 및 향
후 전망’ 자료에 의하면 현재 세계 인구는 73억명, 2060년이면 99억명으로 35%나 급증할 것으로 전망된다. 지급의 농업 생산방식으로는 필수적인 식량조차 충당하지 못하는 것은 지명하다. 따라서 현재 세계 각국은 첨단 기술을 활용한 농업 경쟁력 향상 노력을 기울이고 있다.

네덜란드는 우리나라 면적의 1/2에 불과하지만, ICT를 활용해 한계를 극복한 대표적인 농업 수출국으로서 농산물 수입액의 1.5배를 수출(세계 2위의 농산품 수출국, 2013년 기준 1,115억불), 축산물과 화훼가 농업 총 생산의 74%를 차지하고 있다. PRIV는 세계 최고 수준의 은행 환경제어 시스템을 생산하고, Leiy는 세계 최초로 85% 이상 절약하고 있다.

나. 국내 시장동향

현재 우리 농촌은 녹색 중심의 전통적인 농가의 영농 환경이 악화됨에 따라, 고소득 작품의 안정적인 재배가 가능한 비닐하우스의 보급이 급증하는 추세이다. 국내 스마트 온실 적용 가능 면적은 50,598ha로 세계 3위이고, 이 중에서 단독형 82%(41,462ha), 연동형 15%(7,595ha)이며, 스마트온실(환경복합제어 적용 가능) 면적은 15%(7,595ha), 스마트테abolic(일반재배) 적용 가능 면적은 38%(19,111ha)이다[11].

국내 시점에서 생산능력은 5조7천억원으로 전체 농업 생산액의 15%를 차지한다. 수출은 파프리카, 핀가, 토마토 등 6개 품목을 통해 2천억만달러에 달한다.

농진창은 앞서 언급한 바와 같이 국내 스마트팜 시장을 활용화를 위해 시범농장 4곳과 시범사업을 도별로 1개소 추진을 계획하고 있으며, SKT, KT 등 스마트팜 시범사업을 추진하고 있다. SKT는 매년(그림 2)과 같이 ‘지능형 비닐하우스 관리시스템’을 구축하여 스마트폰을 통해 원격으로 재배시설의 개발 및 재배, 개폐, 활용 CCTV 카메라 모니터링, 손수성이 샌정 정보 모니터링이 가능한 서비스를 제공하고 있다. 또한, KT는 (그림 3)과 같이 전남 신안군에 농업(복합환경제어 시스템, 교육)고급형 멤탕링, 문화(UHD, 영화 및 음악 동영상) 웹스케이(건반편 건강검진 및 음식 건강검진) 등 다양한 응용형 ICT 솔루션을 적용하여 지역사회 활성화에 기여하고 있다.

자료: 스마트팜 성공 사례로 언급되는 전남 화순의 한울농장은 2011년부터 생육환경과 조도를 기반으로 토마토를 생산하여 기존보다 생산성이 40% 이상 높이고 관리시간이 기존 대비 4배 이상 줄여지며 에너지 절감도 35% 달성한 것으로 보고되고 있다. 본 농장은 토마토 생산량이 기존 3,380만(65kg/㎡)에서 95kg/㎡ 40%가 늘었으며 은실 관리시간은 4시간에서 2시간으로 50% 줄고, 연료비 등은 35% 정도 절감한 것으로 알려졌다[12][13].
II. 내국외 기술 및 표준화 통향

1. 국내외 기술동향

미국의 농업은 Internet of Things(IoT) 기술, 나노 기술, 빅데이터-클라우드 기술, 로봇 기술 등을 접목하여 농산품 생산가공·저장포장·수송 및 각 과정에 적용되고 있다.

구글 클라우스, 무인 자동차 등 최근 구글의 혁신을 이끈 ‘구글X 프로젝트’에서는 농업 분야가 매우 유망하다고 판단하고 다음과 같은 분야의 연구를 진행 중이다. ① 토양, 수분, 작물건강에 대한 데이터 수집에 중점, 비료, 농약 산업에 도움을 주는 의사결정 지원시스템 기술 ② 기후가 악화되어도 생산량이 유지되거나 증가하는 새로운 작물종 개발 ③ 환경적인 파종을 하지 않고 조건에 맞는 파종을 통한 생산량 극대화 기술 ④ 드론을 이용한 작물 모니터링과 관리 개선 기술 ⑤ 파종, 관개, 수확, 품질을 관리하는 로봇 기술, 또한, 미국에서는 농업 기술과 나노 기술의 융합을 통한 나노 농약 (농약 사용량을 최소화시켜 환경을 보호하고 작물 생산비용을 절감), 나노 체조제, 나노 비료, 나노 센서 및 감별기 (토양 분석, 층간 변산관리, 스마트 유동시스템 등에 활용) 등의 분야에 대한 연구개발에 집중하고 있다("14").

아울러 농업 분야에 IoT 기술을 적용한 사례를 살펴 보면, IBM은 1~2km²의 총 5 6개 지역들을 위한 정확한 지역 일기예보를 제공하는 ‘지역밀착형(hyperlocal)’ 일기 예보 제공을 이행하는 IBM의 담연한 기술을 기반으로 작물의 재 식, 재배, 수확, 유통 등 농업 전반에서 수확량 증가(기상예측모델과 접목을 통해 작물 손실 25% 감소), 품질 개선을 지원할 수 있는 시스템을 개발하였다. 또한, 미국 블루리버 테크놀러지 사의 레티스 블록(Lettuce Box)은 수백만 장의 식물 이미지가 저장된 데이터베이스에서 식물을 잡초로 캐릭터로 구분하여 잡초를 제거하고, 작물만을 선별하여 비료를 전달한다.

현재 우리나라의 스마트팜 기술은 주로 부품(센서, 제어기 등)은 외산을 구입하여 시스템을 구축하는 수준에 머무르고 있다. 상당수 농가는 외산 시스템을 쓰는 것에 대해 도입/설치하고 있어 제품 가격 및 유통-유통비중비가 비싸고, 제품(부품) 간 상호 호환성이 결로 유지보수에 어려움을 겪고 있다. 작은 고장에도 수리 불가능한 상황이 발생하고, AS 어려움으로 시설을 철거하는 농가가 있고 다. 더욱이 외산 의존적인 구조적인 문제로 농가의 재배 용량정보 데이터가 네덜란드 등 시스템 설치국가로 유출, 해당국에서는 유통 정보를 활용하여 국내 시설재배 농가의 시스템 적용 시 활용되는 안타까운 실정이다.

국내 제품은 영세한 중소기업의 한계로 부적합인 기술과 기자재를 개발/공급하여 기자재/부품 간의 호환성이 되지 않으면 농가에 보급한 ICT장비 및 SW에 대한 유지보수에 어려움을 겪고 있고, 기업의 영세성으로 인해 지속적인 개발능력에 한계가 있고 도산하신 농가 피해로 이어지고 있다.

또한, 현재 스마트팜 시스템은 주로 스마트트비지를 통해 원격제어(개폐, 관수, 보일러 작동 등), 현장 영상 및 환경정보 제공 등으로 농민에게 편리성 향상에 커다란 기여를 하고 있으나, 아직 작물의 생산성 및 품질 향상에는 기대치에 미치지 못하고 있다. 은행의 협업환경 제어센터가 분담한 시스템이 환경의 다른 데이터(외부 기상-온도-습도-풍향-습도-장우) 등을 실제 영농현장에 어떻게 적용할 것인지 농가에서는 판단하기 어려운 실정이다. 또한,
현재 실정으로는 농민이 직접 기록해야 하는 생육데이터를 소홀히 다루는 농가도 많아 스마트팜의 시설 내 환경제어가 작물의 생육에 어떤 영향을 주는지 확인하기 어렵다.

아울러, 현재 양액제배방이 증가하고 있음에도 불구하고 대부분 비순환 방식으로 제배하고 있으며 일부 순환식 양액제배장비를 갖춘 곳에서도 화수된 배액에 전기전도도(Electrical Conductivity: EC)를 기준으로 미리 조성된 농축 양액을 참가하여 일정한 전기전도도만 유지하고 있다. 완전한 순환식 제배관리시스템을 통해 작물의 제배환경변화 및 생육단계에 따라 달라지는 양액 내 다양한 영양분의 농도를 개별적으로 측정하고 부족한 이온만 보충하는 정밀 배액관리기술이 요구된다.

EC 기반 농도제어는 양액 내 개별 이온의 농도를 알 수 없으며 특정 성분이 저하되거나 높아지는 등 개별 이온 농도의 불균형이 발생할 수 있으므로 작물의 생육단계에 따라 부족성분의 보충과 과잉성분의 배제 등 효율적 관리가 어렵다.

그리고 국내 제배시설의 난후로 시설의 작동성 미흡 및 정밀제어 곤란, 제배자의 운영능력에 따라 효율성과 경제성이 좌우되는 경향이 있다. 즉, 최소한 비달하우스의 개발로 가능한 수준의 시설 현대화 작업의 지속적인 추진이 요구된다.

2. 국내외 산업 동향

네덜란드의 Priva는 온실에서 작물이 필요로 하는 온도, 습도, 조명, 영양 요소를 자동으로 관리할 수 있는 온실환경제어시스템 및 양액자동제어시스템을 개발/보급하는 회사로서 브렌드 인지도 및 제품 완성도가 우수한 것으로 알려졌다[그림 4 참조]. 또한, 온실의 환경제어 기술을 기반으로 밀양의 내부 환경과 에너지 소비량 관리가 가능하며 시스템을 개발하여 현재 네덜란드의 공공건물의 약 30%에 적용하고 있다.

네덜란드 와예닝군 대학 연구센터(Wageningen UR)는 네덜란드 농업자원물품부의 연구비를 지원 받아 오이를 자동수확할 수 있는 로봇을 개발하였다[그림 5 참조]. 온실 환경에서 잘 익은 오이를 95% 정확도로 판별하고 75%를 수확할 것으로 알려져 있다[15].

네덜란드의 Hortimax는 복합환경제어기 생산 전문회사로서 브랜드 인지도 우수하고, 우리나라에서는 파프리카 재배 농민들이 주로 적용하고 있다[그림 6 참조].

일본에서는 후지쯔, NEC, IBM, NTT 등 유수의 기업들이 농업분야에 ICT기술을 접목하여 다양한 서비스를 제공하고 있다. 일본IBM의 농산업 이력추적 서비스,
3. 국내외 표준화 동향

그동안 시설농업 분야에서 농수산식품부(농림수산식품외환)의 표준화는 주로 단일형/연동형 비닐하우스, 유리온실 단동형/연동형 및 고형배치/압면배치 양액배
세식설의 시설 표준에 주안점을 주고 추진되었다. 최근 농작업(농수산식품외환)과 산업공업협회에서는 한국
형 스마트팜의 정착과 실용화를 위한 ‘스마트 온실 정
보통신기술(ITC) 기기 및 기업’에 대한 단체표준 마련하고
있고, ITC 기기의 온실 도입을 위한 센서 13종의 전기
연결 규격과 측정 범위, 제어장치 10종의 전기 연결
규격 및 각도 규격 등이 포함되어 있다.

현재까지 국내의 농업IT융합 기술과 관련된 표준화
는 사물인터넷기술(연 RFID/USN융합기술) 및 Tele-
communications Technology Association(TTA, 한국정
부통신기술협회)를 통해 2010년부터 시설공간 및 시설
공장 등으로 표준을 제정하고 있다. 시설공간 분야
는 시설공간(온실판재시스템)를 구성하는 장착물의
구성, 구성요소 간의 유무선 인터페이스, 장치와 운영 시
스템 간의 인터페이스 등에 관한 표준이 제정되었다. 식
물공장 분야는 식물공장 내부를 구성하는 에너지 관련
장치, 제어 장치, 광원, 환경제어, 액량, 자동화 로봇 등
의 제어 정보, 환경 정보, 생육 정보, 에너지 정보 수집
장치 및 장치 간 통신 인터페이스, 생육 및 제어 정보를
의연 데이터베이스 및 시스템공간간의 양호 인터페이스 등
ITC 관련에서의 표준이 제정되었다.

한편, TTA는 세계 표준화 관련 포럼·연소사업에 적
극적으로 대응하고, 표준화 참여 활성화 지원을 위해
ITC 표준화와 포럼을 매년 선정하고 있는데, 농업IT융
합 기술 관련에서는 농수산IT융합표준포럼의 시설공
업분야위원회가 2014년 10월 발족하였다. 본 위원회
에서는 전 세계 시설공간비적 60%을 점유하고 있는
아시아 중심의 표준화의 필요성을 강조하고 현재
본, 중국 등과 협력하여 온실 환경제어 S/W의 표준화
를 진행하고 있다.
또한, TTA 정보기술융합학원과 스마트농업(PG426) 프로젝트 그룹에서는 주로 스마트농업 서비스 프레임워크, 시설원에 ICT융합 기술(복합 환경 센서 기준 및 설치, 복합 환경 센서 플랫폼, 복합 환경 센서 기기 인터페이스 및 설치 기반), 스마트농업 기술 분야 표준화/상 호운용/시험 표준화, 스마트농업 기술 분야 국제표준화 협력(International Telecommunication Union Study Group13: ITU-T SG13 등) 등의 표준화 작업을 진행하고 있다.

또한, 농축수산물 에어러나가를 통한 유동구조의 혁신을 위해 Global Standard No.1(GS1) 표준이 적용되고 있다. 현재 GS1 기반의 농축산물 트래킹, 트레이싱 및 리콜을 지원하는 글로벌 에러 추적 시스템 등이 개발 중이다. 아울러 중국 China Food and Drug Administration(CFDA, 국가식품약품감독관리총국) 및 Fudan 대학과 컨소시엄을 통해 중국의 GS1 기반 농업분야의 IoT 시스템과 연동을 추진하고 있다.

4. 항후 발전방향

최근 시설재배(발암) 농가를 상대로 실시한 설문조사 결과에 의하면, 현재 스마트팜 도입에 있어 장애 요인은 시설비 부담(24%), 설치업체 사후관리 미흡(19%), 농장 고장(16%), 관리기술 미흡(15%) 등으로 나타났다. 즉, 일관한 비릴출산 환경(고온, 다음 등)에서 장기간 전달할 수 있는 고성능성의 센서와 시스템 개발이 중요하다. 즉, 스마트팜의 환경계어용 각종 단일 센서(온도, 습도, 전기전도도, 수소이온, 광량, 광도 등)의 개발과 더불어 (그림 8) 및 같은 환경계어용 복합센서 기술의 연구개발이 필요하다. 아울러, 양액 내에서 부족한 영양분이 보충하는 정밀 배양폐 기관 시스템 구축을 위해 양액의 다양한 영양분(질산소 질소, 칼륨, 무기인산, 칼슘 등)의 농도를 개별적으로 측정할 수 있는 센서의 개발도 필요하다.

현재 우리 농가에 적용되고 있는 스마트팜 시스템은 주로 환경정보(온도, 습도, CO₂, 조도 등) 기반으로 스마트기기의 농업사용 정보를 통해 재배시설의 개발 및 제어(보온도개, 천창, 키튼, 환풍기, 스프링클러, 양액, 열풍기 등)하는 수준에 머물러 있다. 따라서 항후 재배 생육정보 기반의 생육단계별 정밀한 작물관리를 위한 생육 최적 환경설 정 모델 개발 및 작물생리 장애 및 방충해 진단 전문가 모델 개발이 요구된다. 더욱이 (그림 8)와 같이 하우스 내의 환경정보, 생육정보 이외에 기상정보, 외부환경 정보, 농산물 유통정보, 농산물 생산정보, 농산물 가격 정보 등을 빅데이터/클라우드 기반의 정보처리를 통해 고부가가치의 다양한 지식 서비스를 제공할 수 있는 기술을 개발하는 것이 매우 중요하다. 즉, 스마트팜 시스템이 단순히 생산 시설 영역에서 빌라나 농업 가정사 슬 전반(생산, 유통, 서비스)의 효율성 강화 및 새로운 부가가치를 창출할 수 있도록 확대 발전시켜야 한다. 스마트팜 시설농업과 가공·유통·식품·관광제품 등 2/3차 산업과의 융합, 특히 기후환경, 물환경 등 타 산업과의 융합을 통한 새로운 상품 및 시장 구축이 이루어져야 한다. 이

(그림 8) 스마트팜의 통합 환경계어센서 개발도
와 같은 유관/타 산업과 연계된 시스템을 통해 생산량 및 출하시기 조절, 유통 정보 제공(최적의 유통 경로 제공, 소비 패턴 정보 등), 패종 시기 및 농약 살포 시기 등의 정보가 제공될 수 있어야 한다. 즉, 향후 스마트팜 시스템은 기상 정보(기상청), 작품의 가격정보 및 통계 정보(농정원), 영농정보시스템(농진청), 농업계제품측정시스템(농어촌공사) 등의 연동을 통해 통합 시스템 구현에의 접근이 요구된다.

마지막으로 농업ICT 융합 기업 간에 상생협력을 통해 산업 생태계의 조성과 국내 스마트팜 기술의 표준 제정 및 제품 인증 절차를 강화할 필요가 있다. 현재 우리 농가의 실정은 감안하여 단독형 비닐하우스, 연동하우스, 유통및 순으로 단계별로 스마트 온실 표준과 모델을 개발하는 것이 바람직하다. 시설농업 관련된 주요 표준 개발 방향을 제시하면, 스마트농업 서비스 프레임워크(스마트농업 서비스 시나리오, 스마트농업 센서 디바이스 인터페이스, 스마트농업 생산생육 관리 및 유통 메타데이터 구조 정립, 이용안정성 및 정확성을 위한 인증, 인증표준 및 안전성 표준), 시설내 ICT융합 기술(복합 환경 센서 기준 및 설치, 복합 환경 측정 솔루션, 복합 환경 측정 기기 인터페이스 및 설치 기준), 에너지 절감 시설농업 기자재 등이 있고, 이를 토대로 시설농업의 성장 산업화 모델 개발이 요구된다. 나아가 한국ITU연구 위원회 관련 연구반 협력(ITU-T SG13 등), 유엔농업보건 표준 등과 협력을 통해 시설농업의 국제 표준화도 적극적으로 추진하여 세계 시장을 선도할 필요가 있다.

증거해설

** GS1 표준 ** 국제 공급망(Supply Chain) 관리에 필요한 표준 기술로 식별(identity), 수집(capture), 공유/share) 계획을 표준화하며, RFID와 사물 인터넷 표준 기술 개발이 중점적인 목표임.

** 양해 정리 **

ICT	Information & Communication Technology
UHD	Ultra High Definition
IoT	Internet of Things
AGRI	Agriculture
EC	Electrical Conductivity
TTA	Telecommunications Technology Association
ITU-T SG	International Telecommunication Union Study Group
GS1	Global Standard No.1
CFDA	China Food and Drug Administration

** 참고문헌 **