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In this paper, we propose a dual-phase approach to 
improve the process of heart disease prediction in a mobile 
environment. Firstly, only the confident frequent rules are 
extracted from a patient’s clinical information. These are 
then used to foretell the possibility of the presence of heart 
disease. However, in some cases, subjects cannot describe 
exactly what has happened to them or they may have a 
silent disease — in which case it won’t be possible to detect 
any symptoms at this stage. To address these problems, 
data records collected over a long period of time of a 
patient’s heart rate variability (HRV) are used to predict 
whether the patient is suffering from heart disease. By 
analyzing HRV patterns, doctors can determine whether  
a patient is suffering from heart disease. The task of 
collecting HRV patterns is done by an online artificial 
neural network, which as well as learning knew 
knowledge, is able to store and preserve all previously 
learned knowledge. An experiment is conducted to 
evaluate the performance of the proposed heart disease 
prediction process under different settings. The results 
show that the process’s performance outperforms existing 
techniques such as that of the self-organizing map and gas 
neural growing in terms of classification and diagnostic 
accuracy, and network structure. 
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I. Introduction 

Wearable computing technology and wireless 
communications have been developed and used successfully in 
areas such as surveillance, human action recognition, virtual 
reality gaming, and training simulations [1]–[2]. Advances in 
these fields have helped pave the way for the advent of mobile 
healthcare services. A healthcare system can continually 
monitor a person’s physical condition and detect abnormal 
activities using bio-signals acquired from body sensors [3]. The 
World Health Organization estimated that there would be about 
23.6 million deaths caused by heart disease by 2030 [4]. 

Traditionally, heart disease is often predicted based on   
risk factors and symptoms. It can be diagnosed based on a 
number of tests; for instance, magnetic resonance imaging   
or electrocardiography (ECG). A point score prediction 
probability algorithm can be applied to estimate a 5- and 10-
year risk of heart disease for individuals free of cardiovascular 
disease [5. Currently, there is a lack of effective techniques that 
can efficiently interpret physiological signals recorded from 
sensors into some form of knowledge that is understandable to 
humans; this subsequently makes it very difficult when using 
raw data to try to correctly diagnose a person suffering from  
a cardiovascular disease. To address this problem, statistical 
analysis and data mining techniques have been developed to 
extract relationships from large clinical databases [6]–[9]. 
However, most of the related algorithms in the literature do not 
execute in real time [10.  

Discriminant function analysis, which is based on logistic 
regression, can be used to estimate the probability of a disease; 
however, the results obtained from using such a technique are 
not easily interpretable [11. Artificial neural network (ANN) 
models, such as multilayer perceptron [12, are well-known 
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tools for multivariate analysis and disease risk prediction in the 
field of data classification. Conventional ANNs only function 
when a whole dataset is known in advance; thus, they fail to 
predict an individual’s risk of heart disease in a non-stationary 
environment. So far, some online learning methods in the field 
of data stream mining have been proposed cell structures [13, 
self-organizing map (SOM) [14, and growing neural gas 
(GNG) [15. The biggest challenge for these machine learning 
techniques in a mobile environment is to preserve previously 
learned knowledge while learning new knowledge 
continuously and preventing overfitting.  

In our novel predictive framework, a patient’s clinical 
information, such as age, gender, serum cholesterol, glucose 
intolerance, and so on, is used to foretell the possibility of the 
presence of heart disease within the patient. To this end, 
patients are first classified into different heart disease risk levels. 
An association rule algorithm is then introduced to discover the 
relationships between the heart disease risk factors of patients. 
The confident frequent rules are extracted from the dataset of 
risk factors and are used to predict a patient’s likelihood of 
contracting heart disease in the future. In practice, if physicians 
rely only on results that are a product of statistical analyses of 
static information, then this may lead them to incorrectly 
diagnose a patient or to fail to identify the presence of a disease 
altogether. Accordingly, for a doctor to improve the degree of 
certainty to which they can be sure of the presence of heart 
disease in a patient, the doctor must have a long-term record of 
the patient’s ECG signals. In contrast to the discrete and static 
characteristics of clinical information, heart rate unceasingly 
alters over time. The abnormal state of a patient’s heart can be 
recognized by examining the patient’s heart rate variability 
(HRV) patterns, which are discovered by the online neural 
network PHIAN, introduced in [16, under different settings. 

PHIAN is a classification model consisting of three layers; 
namely, input, middle, and output. The first layer is used to 
receive data from the input space. The middle layer is 
composed of neurons organized in a dynamic graph. The role 
of the neurons in the classification task is to separate the input 
dataset into classes. The output layer is responsible for 
separating the neurons into a number of decision regions in the 
output space. In a mobile environment, all of the data are not 
known prior to training the classification model; thus, new 
datasets accompanied with new classes may appear later. 
Hence, the classification model should be able to learn new 
classes continuously without forgetting the old ones. For this 
purpose, an adaptive and incremental learning strategy is 
applied in the training process of the PHIAN model. At each 
step of the training process, signals from ECG sensors and 
accelerometers are fed into the PHIAN model after being 
transformed into the form of a vector. Generally, input data 

cannot be linearly separated into classes, and there is some 
overlap between classes. To tackle the problem of non-linear 
classification, a Gaussian radial basis function (RBF) is used as 
an activation function. The PHIAN model starts with two 
neurons located randomly in the input space and is 
supplemented with new ones as training progresses. When the 
training process terminates, we obtain decision regions that are 
separated in the output space — each decision region 
corresponds to a class. To evaluate the proposed heart disease 
prediction approach in comparison with two previous online 
learning methods, SOM and GNG, we build a prototype 
system that firstly classifies the patients into three groups, each 
group corresponding to a risk level of heart disease. 

A PHIAN model is constructed for each group of patients  
to categorize the patients into two classes, “Yes” or “No,” of 
heart disease. To validate the performance of PHIAN, eleven 
scenarios of three different daily activities are set up to collect 
datasets for training and testing the classification model. The 
evaluation criteria include how well the input data distribution 
is represented by classes and PHIAN’s ability to learn new 
patterns while preserving old ones (in a non-stationary 
environment). The experimental results show that PHIAN 
outperforms the existing techniques in terms of prediction 
accuracy and classification model complexity. 

In summary, our predictive approach is able to determine to 
what extent a person is at risk from heart disease. With the 
support of location tracking techniques [17]–[19], it can be 
integrated in telemedicine systems to provide context-aware 
healthcare services anytime, anywhere. 

II. Dual-Phase Heart Disease Prediction Framework 

The framework shown in Fig. 1 is a new approach that 
enables doctors to monitor subjects even when they are out of 
hospital going about their daily routine. To estimate the degree 
of seriousness of heart disease in a patient and then make an 
effective decision about treatment, cardiac physicians first 
examine the patient’s clinical information, such as age, gender, 
serum cholesterol, whether they smoke, systolic blood pressure, 
left ventricular hypertrophy, glucose intolerance, and so on. 
The patient is then asked about possible symptoms; for 
example, they may be asked about squeezing pains in the chest 
and shortness of breath. Such an examination is largely based 
on static clinical information and is not sufficient for a doctor to 
state with any great degree of certainty as to whether a patient 
is suffering from heart disease or not. 

Since heart disease has a strong connection to HRV patterns, 
doctors need to analyze the patient’s heart rate when the patient 
is undergoing some physical activities to be more certain as to 
whether or not they have heart disease.  
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Fig. 1. Dual-phase framework for heart disease diagnosis. 

Input during    
[ti, ti+1] 

 

Classes during
 [ti, ti+1] 

 

Preprocessing Neural network  Labeling  

Hidden layer  
(graph G(V, E)):  

training of input weights

Insertion of 
new nodes

D
at

a 
ac

qu
is

it
io

n 
 

…
 

…

…
 

l1 

lk 

xm 

x1 

Health 
state 

Normal   

Abnormal 

Phase 2: 
 long-term HRV 
patterns analysis 

Low 

Medium 

High 

Discrete, static data 
(clinical information) 

Frequent confident rules 
discovered by a conventional 

data mining technique 

Classes of subjects with 
different risk levels  

Daily 
activity 

Sleeping 

Sitting 

Working 

Phase 1: predict cardiac disease based on risk factors and symptoms  

Input later 

Output layer

ECG sensor 

Accelerometer 

wj
in 

wj
out 

Feature representation  
and input encoding 

 
Our proposed heart disease prediction process can be divided 

into two phases according to the properties of the risk factors 
used in a medical-decision support system for diagnosis of 
heart disease. Firstly, a rule-based classification technique uses 
patients’ clinical information to categorize the patients into 
different classes. Secondly, patient HRV patterns are 
discovered from long-term ECG recordings. This task is 
accomplished by the online neural network model PHIAN [16. 
Five main steps; namely, EGC signal collection, data pre-
processing, classifier training, labeling, and performance 
validation, are included the second phase (see Fig. 1). A series 
of signals recorded from EGC sensors over an interval of time 
[t1, t2] is converted into a vector x = (x1, x2, … , xm), in which 
each element represents a feature (extracted from the signals). 
Each vector is then assigned a class label. These labels 
represent the multiple heart states experienced by the patient 
during the interval [t1, t2]. These vectors are then used to train 
the neural network model shown in Fig. 1. This process is in 
fact a classification problem; thus, after a finite number of 
training steps, a number of distinct decision regions should 
begin to appear in the output space. The obtained model can 
then be used to assist doctors with cardiac disease diagnosis. 

1. Rule Generation 

To estimate an individual’s level of risk of heart disease,  
we apply a rule-based classification technique. The technique 
makes use of the risk factors shown in Table 1. In a decision 
support system, a collection of IF-THEN rules is used. A 
classification rule is defined as Condition  y in which 

Condition is a combination of attributes and y is a single class 
label. An example of one such classification rule is 
“(gender=Male)  (fbs=0)  (restecg=0)  (oldpeak [0.3,* )) 
 (thal=7)  (num=1).” Diagnosis is the output of the rule-
based classification technique, which is given as a decision and 
represented by a class attribute. The class attribute indicates the 
level of risk of heart disease. It is the last risk factor, num, in 
Table 1. 

Given a set D of records of risk factors and a set Y of class 
labels (y’s), each patient is associated with a class label y. Each 
record in D is called an instance. The problem is to find all of 
the possible rules from D. Each combination of attribute name 
and attribute value (Risk factor = value) is denoted as an item. 
A set I = {i1, … , in} of distinct items is called an itemset. Prior 
to extracting the rules, we need to transform dataset D into a set 
of itemsets. For attributes that are of an ordinal data type, the 
attribute name is simply associated with its value. For those 
that are of a continuous data type, we need to first discretize the 
range of continuous-valued attributes into intervals. However, 
the intervals influence the resulting rules and thereby the 
classification accuracy. Thus, to reduce the resulting 
misclassification error, we utilize the Gini index, which is a 
measure of statistical dispersion, to determine the intervals. 
Assume that attribute values are split into k intervals. The 
quality of this discretization is then determined by  

 split
1

Gini Gini( )
k

i

i

r
i

r

  ,               (1) 

in which ri is the number of instances belonging to the partition 
i and r is the total number of instances. The impurity of each  
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Table 1. Risk factors of heart disease. 

Factor Meaning Data type 

Age Age Numerical 

Oldpeak 
ST depression induced by 

exercise relative to rest 
Numerical 

Threstbps 
Resting systolic blood 

pressure on admission to the 
hospital (mmHg) 

Numerical 

Thalach 
Maximum heart rate 

achieved 
Numerical 

Relaca 
Number of major vessels 

colored by fluoroscopy 
Numerical 

Chol Serum cholesterol (mg/dl) Numerical 

Gender Gender 
0 if female 

1 if male 

Cp Chest pain type 

1 typical angina 

2 atypical angina 

3 non-anginal pain 

4 asymptomatic 

Fbs 
Fasting blood sugar over 

120 mg/dl? 

1 if yes 

0 if no 

Restecg 
Resting 

electrocardiographic results 

0 normal 

1 having ST-T wave 
abnormality 

2 LV hypertrophy 

Exang Exercise induced angina? 
1 if yes 

0 if no 

Slope 
Slope of the peak 

exercise ST segment 

1 upsloping 

2 flat 

3 downsloping 

Thal 
Exercise thallium 

scintigraphic defects 

3 normal 

6 fixed defect 

7 reversible defect 

Num 
Class label giving    

diagnosis of heart disease 

0, 1. Low 

2. Medium 

3, 4. High 

 

 
partition after discretization is determined by the following 
formula: 

2Gini( ) 1 ( )
y

i p y  ,              (2) 

in which p(y) is the number of instances belonging to a class y. 
If the Gini index is zero, then all instances belong to one class, 
which means there would be no misclassification error.  

For efficient computation, the values of the attributes are 
firstly sorted and linearly scanned. Candidate split positions are 
then computed by taking the midpoint between two adjacent 
sorted values. Finally, the split point is determined by that that 
gives the minimum Gini index. Figure 2 illustrates an example 
of Gini index computations used to determine the split point for  

 

Fig. 2. Example of split point determined by minimum Gini
index value. 

Class No No No Yes Yes Yes No No No No 

 
Cholesterol  

60 70 75 85 90 95 100 120 125 220 

55 65 72 80 87 92 97 110 122 172 230

≤ > ≤ > ≤ > ≤ > ≤ > ≤ > ≤ > ≤ > ≤ > ≤ > ≤ >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

 
 
the attribute cholesterol with the assumption that there are two 
classes, “Yes” and “No.” After computing the Gini indexes for 
the attribute cholesterol, the selected split point is 97, which 
corresponds to the smallest Gini index, 0.300. 

Assume that all the itemsets are lexicologically sorted. If an 
itemset C  I, then we say that I satisfies C. Support of an 
itemset C is the number of instances in D containing it. The 
itemset C is said to be frequent if its support is greater than or 
equal to a predefined threshold, minsup. A rule, r, covers an 
instance I if the instance I satisfies the condition of the rule (or r 
is triggered by I). The coverage of a rule is defined as the 
number of instances that satisfy the condition of a rule. The 
accuracy of a rule is defined as the number of instances that are 
able to trigger the rule, where the labels of such instances must 
be equal to the label y belonging to the rule. A set X  I with k 
= |I| is called a k-itemset. The discovery process has two main 
tasks; namely, the discovery of all frequent itemsets and class-
label assignment. To find all of the frequent itemsets, multiple 
passes have to be made. 

Concretely, dataset D is first scanned to find the frequent   
1-itemsets. For k > 2, candidate k-itemsets are generated as 
follows: given a set of frequent (k – 1)-itemsets, Ik–1, the 
candidates for the next pass are created by making a join with 
Ik–1. An itemset C1 = <i1, i2, … , ik–1> joins with another one  
C2 = <i2, i3, … , ik> and the candidate cand is produced if after 
dropping the first item of C1 and the last item of C2 the rest of 
the two itemsets are equal; that is, i2 = i2, … , ii–1 = ii–1. The 
candidate will be an extension of C1; that is, the last item of  
C2 is added to it (cand = <i1, i2, … , ik–1, ik>). Its support is 
identified by scanning the transformed dataset D. If this itemset 
is frequent (that is, support(cand)  minsup), then we proceed 
to the next stage for labeling. In principle, for each label y in Y, 
a candidate rule of the form cand  y is created. The accuracy 
of all the candidate rules would then be determined and cand 
would then be assigned with the label that gave the highest 
accuracy. However, candidate rules with an accuracy value  
that is less than a predefined threshold, minconf, would be 
eliminated. 

With the final set of discovered rules, set R, we can diagnose 
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the risk level of a subject as follows: given the risk factors of a 
subject in the form of “itemset x,” for every r R, we check 
whether x satisfies the condition of r. There might be more than 
one rule being triggered by x; hence, we sum the support and 
accuracy values and choose the highest total value. Based on 
the output of the rule-based prediction, doctors are then able to 
make a more informed decision as to whether a patient is likely 
to be suffering from heart disease. If necessary, a patient can 
undergo a second examination of HRV patterns under different 
daily activities. The heart state of the patient is recognized by 
HRV patterns, which are discovered by PHIAN in the second 
phase of the model. 

2. Incremental Neural Network for Recognizing Heart 
Disease Based on Long-Term ECG Signals 

This part is devoted to data preprocessing, which involves 
both feature representation and input encoding. First, the HRV 
patterns contained within a specified interval of time are 
analyzed to extract feature vectors. These feature vectors are 
then used to train the PHIAN model. 

A. HRV Analysis  

HRV is defined as the alteration of beat-to-beat RR intervals. 
Heart rate has a great influence on the activity of two branches 
of the automatic nervous system; namely, the sympathetic and 
parasympathetic systems. The balance between these systems  
is reflected through the spectral analysis of RR intervals. Two 
bands, a low-frequency (LF) band (0.04 Hz to 0.15 Hz) and a 
high-frequency (HF) band (0.15 Hz to 0.4 Hz), are found. It is 
believed that the sympathetic–parasympathetic balance is 
reflected by the ratio LF/HF. A Poincaré plot is proposed to 
analyze the changes in a patient’s HRV and suggested as an 
efficient method for detecting patients at risk of heart disease 
with short-term ECG measurements [7]. In principle, for a 
certain time interval, a Poincaré plot is plotted using a sequence 
of RR intervals. 

Figure 3 shows an example of HRV patterns belonging to 
patients having a low-level risk of heart disease and average 
heart rate of 53 Hz. The results in the upper-right corner 
represent cases where patients had a breathing frequency of  
0.1 Hz, and the results in the lower-left corner represent cases 
where patients had a breathing frequency of 0.2 Hz. 

The patterns of points are then converted into the form of an 
HRV encoding vector. This task is tackled by decomposing the 
space into a number of regular cells. All cells have the same 
size. Each cell corresponds to an element of the HRV encoding 
(input) vector. It is assigned a value of “0” or “1” depending on 
whether it contains a data point. This vector is then   
extended with some elements of the features extracted from  

 

Fig. 3. Two patterns of points represented in a Poincaré plot for
two cases of breathing frequency. 

Breathing frequency: 0.1 Hz 

Breathing frequency: 0.2 Hz 

 
 
accelerometer recordings. 
 
B. Network Learning Mechanism  

The classification model used in our approach is named 
Pointcaré coding-based HRV patterns discovering incremental 
artificial neural network (PHIAN), which is trained to 
recognize the heart states along with the physical activities of 
the patients. 

a. Network Structure 

The neural network model is composed of three layers; 
namely, input, middle, and output (see Fig. 1). Incremental 
learning takes place in the second layer and is represented by a 
dynamic graph, G. This graph consists of a number of vertices 
(neurons) that are connected by edges. Therefore, the middle 
layer is denoted by G(V, E).  

The input layer connects to a neuron through an n-
dimensional input weight vector, wj

in. Associated with each 
neuron is an activation function — here, a Gaussian RBF is 
selected in the hope that the training process results in fast 
convergence. The input weight vector wj

in represents the center 
of a cluster of data (class center) in the input space and is the 
center of RBF as well. For each neuron, j, in the set V, the 
standard deviation, j, of the Gaussian RBF is computed by (it 
is the mean distance of the edges that emanate from j) 

in in1
σ || ||

j

j j c
c NjN 

  w w ,             (3) 

where Nj denotes the number of neighboring neurons of j and 
wc

in is the input weight vector of a neighbor c. After training, 
classes are represented by decision regions in the output space 
whose positions are indicated by an m-dimensional weight 
vector, wj

out. Each neuron is also associated with a variable, Errj. 
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This variable stores the local error caused by the neuron in 
classification. 

b. Training Strategy 

In principle, the training of the PHIAN model is the process 
of finding a topology for graph G. Graph G starts with two 
neurons connected by an edge. Their positions in the input 
space are represented by two random vectors, w1 and w2. 
Given a dataset D of samples, each sample is represented by a 
pair <x, z> in which x = {x1, x2, … , xn} is the input vector and 
z = {z1, z2, … , zm} denotes the desired output vector. At each 
learning step, an input vector x is fed into the model. The 
neuron that is closest to the input vector x (best matching 
neuron), b, is found by the Euclidean similarity measure. The 
weight vector wb

in of neuron b and its neighbors are then 
rewarded with some value so that they become closer to the 
sample input vector x in the input space.  

Rules for updating errors and centers of neurons are defined 
as follows: 
As the environment is not stationary, input data have a high 
temporary probability density. We train a model that is able to 
give a uniform distribution of local error. To this end, an error-
modulated Kohonen rule along with a monotonically 
decreasing function g: R0  [0, 1] is used. The error variable  
of b is updated by Err γ Err (1 γ) Err( ),b b     x  where 
the error Err(x) is caused by the input x and  is a constant in 
the range [0, 1]. Let lb be the learning rate of b and lc be the 
learning rate of its neighbors. Neuron b and its neighboring 
nodes are rewarded in the sense that they are allowed to be 
closer to the input vector x by a distance of w, which is 
computed by (4) and (5) below, respectively. 

in in
b

Err
|| ||,

Errb b
b

l g
 

      
 

w x w         (4) 

in inErr
: || ||,

Err
c

b c c c
b

c N l g
 

       
 

w x w     (5) 

where 
1

Err Err with { | ( , ) }
b

c b
c Nb

N v b v E
N 

   .  

Adapting the center vector in
bw  in this way implies that 

neuron b wins in the competition for the best matching node to 
an input vector x only when its error accumulation Errb is 
higher than the average value of its neighboring neurons c, 
Err.   

To achieve separated classes in the output space, we need to 
adapt their positions as learning progresses. This procedure is 
performed as follows. Let o = {o1, o2, … , om} be the actual 
output for input vector x. When the input vector x is presented 
to the network, it activates every Gaussian neuron j in V to 

some degree, computed by 
in

2

|| ||
exp .

2j

j

j

f
σ

 
    

x w
 These 

activations are then spread forward to node k in the output layer. 

We take the sum of the products of the activation values and 

connection weights  out
,j kw  coming from neuron j in the 

middle layer; that is, out
, .k j k jj

I w f   Thereby, the weight 

of the connection between neuron j and node k is updated as 
out out
, , o ( )j k j k k k kw w l z o I      where lo is the output learning 

rate.   
Practically, there always exists some overlap between 

decision regions, yet the probability density of the overlapping 
region is often low compared to the probability density of the 
class centers. The removed nodes are those that do not have 
any neighbors. This operation is done when the number of 
learning steps is equal to an integer multiple () of input 
vectors presented to the network. From this moment onwards, 
new neurons might be added to the network. To determine 
where to insert a new node into the network, firstly we have to 
find the neuron with the highest error. If the error of this neuron, 
named q, is greater than some insertion criteria, insTh, then a 
new neuron, p, located between q and its neighbor f with 
maximum error would be added. This insertion operation leads 
to 50% decline in the error accumulation for q and f. This is 
because the new neuron gets that error reduction as its initial 
error variable value. This reduction helps avoid another 
insertion at the same place as neuron q. At each adaptation step, 
all local error accumulations are multiplied by a constant, , 
where   [0, 1], to stress the importance of recently occurred 
errors. 

In fact, the edges of the graph in the middle layer are used to 
determine the diameter of the Gaussian RBF. However, the 
locations of neurons are slightly moved at each adaptation step. 
Furthermore, the node insertion operation causes changes to 
the network topology. Therefore, neighborhood information in 
the network needs to be continuously updated. To address this, 
each edge in the graph is associated with an age variable. For 
an input vector x, the second-best matching neuron, s, is also 
identified beside the best matching neuron b. If there exists an 
edge between b and s, then its age variable is set to zero; 
otherwise a connection is created and initialized with zero. 
When a new edge is created, age variables of all of the edges 
that start with node b are increased by one. After updating the 
neuron centers, some edges may become invalid. They would 
then be deleted. A threshold, amax, is used to determine the 
obsolete edges in this case. The training process is repeatedly 
performed until the model converges, which is determined by 
observing the mean squared error (MSE) of the neural network 
model. 
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III. Results and Analysis   

In this section, we conduct experiments to evaluate the 
performance of the proposed framework.  

1. Assessment of Rule-Based Heart Disease Diagnosis 

A system is constructed to predict the risk levels of patients 
based on the rules extracted from their clinical information. 
The Cleveland dataset from the UCI repository is used in the 
prototype system [20]. It is divided into sets; namely, training 
and testing. Rules are extracted from the former, and the latter 
is used to test the prediction accuracy. Three levels of risk; 
namely, low, medium, and high are distinguished. 

As explained in the previous section, the number of rules   
is influenced by two parameters — minimum support and 
minimum confidence. It thereby influences the efficiency of 
the system; for example, the amount of time spent matching 
rules when predicting and diagnostic accuracy. Therefore, the 
number of rules to be used must be decided before the rules  
are integrated into the knowledge base of the system. Two 
experiments were conducted. The first experiment is to find the 
most suitable parameter values to set as the default values    
of minimum support and minimum confidence. The second 
experiment is to test the accuracy of the rule-based prediction. 
In the first experiment, we run two types of tests by fixing 
minimum support and varying the minimum confidence; and 
vice versa. For each set of rules obtained from a pair of minsup 
and minconf, classification accuracy is assessed. We finally 
select the ones that give the highest accuracy. The following 
illustrates the results we obtained for the most suitable pair of 
minsup and minconf. In the first test, minconf is fixed, and we 
observe that the number of rules sharply decreases as the value 
of minsup increases (see Fig. 4). 

In the second test, minsup is fixed, and we can observe that 
the number of rules decreases as the value of minconf increases 
(see Fig. 5).The rules that are discovered with the parameter 
values of minsup and minconf, 15 and 30, respectively, are 
integrated into the prototype system. The testing dataset is used 
to assess the prediction accuracy. We divided the training 
dataset into two groups of people (that is, a group of people at 
low risk of heart disease and a group of people at medium or 
high risk of heart disease) and evaluated the prediction 
accuracy for each group. The rule-based prediction accuracy is 
measured by the percentage of correctly classified people in 
each group. The results showed that for the group of people at 
low risk of heart disease, the prediction accuracy is 95%. 
However, the prediction accuracy is only about 75% for the 
other group. According to experts in cardiovascular disease, the 
inaccuracy in prediction may have occurred because the same 
symptoms can be shown in many other diseases; for example,  

 

Fig. 4. Number of rules as a function of minsup (minconf = 30).
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Fig. 5. Number of rules as a function of minconf (minsup = 15). 
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irregular heart rhythms can be related to thyroid problems. To 
be certain of whether a subject has heart disease, it is crucial  
to monitor and examine the subject’s ECG signals as they 
perform their daily activities. 

2. Assessment of Predicting Heart Disease Based on HRV 
Patterns 

In the second phase, prediction evaluation is done for each 
group of individuals discovered in the first phase.  

A. Settings for Validating Neural Network 

The neural network model is assessed using the dataset built 
from the group of individuals aged between 46 years old and 
50 years old. With regards to the daily activities of the subjects, 
three physical activities — resting, working, and exercising — 
are distinguished. Figure 6 shows an excerpt from a time-series 
signal streaming from an accelerometer sensor. One of two 
heart states, normal (N) and abnormal (A), is recognized for 
each of the subjects. Each measurement for an activity takes 
place for about four minutes. RR intervals are captured at every 
3 ms during this period. The visual space of the scatter plot was 
partitioned into 784 regular cells.  

To acquire data samples for constructing the classification 
model, several scenarios were set up. In a scenario, more than  



ETRI Journal, Volume 37, Number 2, April 2015 Yang Koo Lee et al.   229 
http://dx.doi.org/10.4218/etrij.15.2314.0103 

 Exercising Resting Working  

S
en

so
r 

va
lu

e 

Time (s) 

Fig. 6. Excerpt from a time-series signal from accelerometer
sensor. 
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Table 2. Parameters for HRV data generation. 

 Resting Working Exercising

Class label N A N A N 

Range of   
heart rate 

50–56 60–65 65–73 126–135 141–142

Average    
heart rate 

53 62.5 69 130 141–142

Heart rate 
standard 
deviation 

1.6475 1.3693 2.211 2.494 141.5 

Breathing 
frequency (Hz) 

0.1–0.2 0.25 0.4 

LF/HF ratio 0.5 1 4 

 

 
one activity was performed and an activity could be repeated 
many times under the control of heart rate and breathing 
frequency. Two types of training sets were generated. The first 
one is denoted as D(e), where e indicates the number of 
samples belonging to more than one class. Parameter e 
occupies about 2% of the total samples. The second one is 
denoted as D(rand), in which samples were generated 
randomly without controlling the degrees of overlap between 
classes. Data set D(e) is collected from seven scenarios, 
whereas D(rand) is collected from eleven. Each scenario 
corresponding to an environment gives a subset Di of data 
examples. Table 2 shows the values of the parameters 
corresponding to the three aforementioned activities.  

To validate whether our model can continuously learn new 
knowledge, we tracked the percentage of classification error as 
the experiment progressed. Classification error is defined by 
(5) below. The test dataset should be built so that it contains 
data samples belonging to all of the classes.  

#mistakenly classified examples
Generalization error .

# totalexamples of test set
 (5) 

To know how well decision regions represent the input 
probability distribution, we apply the MSE as a quantity 
measure. This measure indicates the classification quality 

obtained after training the model. MSE is computed by (6) 
below. 

21
MSE ( ) ,

M

i i
i

o z
M

                (6) 

in which M is the number of data samples in the training set, oi 
is the output given by the model for the example i and zi is the 
target value of the model for example i. The smaller the value 
of MSE, the better the classification quality. We exploit this 
measure as the termination condition of the training process; 
that is, when MSE reaches a threshold value of about 0.01, the 
training stops. Some parameters with default values used in the 
training process include best learning rate, lb = 0, 1; learning 
rate of neighbor, lc = 0.001, output learning rate, lo = 0.1, 
constants  = 0.995 and  = 0.8;  = 30, age threshold, amax = 
50; and insertion threshold, insTh = 0.5. The experiments in 
[16] and [21] manifested that with these values the final model 
would result in the best result; therefore, we used them too.   

B. Performance Assessment of PHIAN 

Figure 7 displays the generalization error of PHIAN trained 
on D(rand) as learning progresses. It is observed that only a 
few classes appear in the environment (points 1 to 4), so the 
classification error is relatively high. However, as the 
environment changes, new classes may appear and some old 
classes still remain, so the generalization error sharply 
decreases. Then, the classification error becomes stable in the 
environment between points 4 and 5 — this is because some 
classes in the previous environments appear again. Learning 
continues by feeding the new samples and classes into the 
models until all classes are presented to the model. We observe 
that the classification error reaches zero at the end of the 
environment (point 6). However, after this, new samples 
belonging to more than one class begin to show up and the 
resulting confusion leads to an increase in classification error. 
As explained in the learning strategy, new nodes were inserted 
with the hope of minimizing the classification error (see Fig. 8).  
 

 

Fig. 7. Generalization error of PHIAN trained on D(rand) as 
environment changes. 
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Fig. 8. Number of nodes for PHIAN trained on D(e) and D(rand), 
respectively. 
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Fig. 9. MSE as a function of learning step. 
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When the environment changes from points 7 through 11, only 
the data samples from existing regions are fed into the model. 
New neurons are still inserted together with the operation of 
center adaptation. The learning process tries to adapt to the new 
environment, and this is repeated until no further learning is 
needed. Finally, the model becomes stable and gives the 
minimum classification error. 

Figure 8 illustrates the variation in the number of nodes for 
PHIAN trained on D(e) and D(rand), respectively. As there is a 
big overlap between classes in D(e), the number of nodes given 
for PHIAN trained on D(e) is greater than that for PHIAN 
trained on D(rand), though the size of D(rand) is much larger 
than that of D(e). This is because the learning strategy is based 
on the idea that new neurons are added when there are signals 
coming from new regions. In the same environment, neuron 
insertion has to be stopped if it does not lead to a decrease in 
classification error.  

Figure 9 displays the results obtained after the model is 
trained on the data sets D(e) and D(rand) for two epochs. It is 
observed that MSE gradually declines in both cases. In other 
words, classes are well separated in the output space at the end 
of the training process. However, the result given by the data 
set D(rand) is better than that of D(e) because the degree of 
overlap among classes in D(e) is quite high. This also explains 

why the number of nodes for D(e) is greater than that of  
D(rand) (see Fig. 8). 

C. Comparing Efficiency of PHIAN with Existing Techniques 

The effectiveness of our approach is evaluated in comparison 
with two well-known online learning techniques, SOM and 
GNG. Figure 10 compares generalization error as a function of 
training steps. To evaluate the effectiveness of the algorithms 
PHIAN, GNG, and SOM, we trained three neural network 
models on D(rand). Technically, GNG and PHIAN work 
similarly, so their classification accuracy is almost the same, 
except in some places where there is overlap between regions 
PHIAN works more effectively than GNG. Since SOM is 
incapable of preserving old patterns in a non-stationary 
environment, it cannot predict examples of old classes, which 
makes the classification error higher compared to when using 
the other two techniques. 

To affirm the effectiveness and efficiency of the proposed 
model, we conducted a test to compare the network structure of 
PHIAN and GNG. Figure 11 shows that there is a big gap 
between the number of nodes given by PHIAN and GNG. The 
result of PHIAN indicates that the network structure learned 
under data set D(e) with serious overlap is still simpler than  
that learned by GNG under data set D(rand). In brief, the 
classification accuracy of PHIAN is the same or even better in  
 

 

Fig. 10. Generalization errors of three methods. 
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Fig. 11. Network structure of PHIAN compared with GNG. 
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Fig. 12. Variations in MSE for PHIAN and GNG variants. 
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some cases than that of GNG, while its number of nodes is far 
fewer than that for GNG.  

Figure 12 displays the variations in MSE for the three 
models. We observe that GNG works as well as PHIAN in the 
case of non-overlap only; however, owing to unlimited new-
node allocation during the training process, overfitting occurred. 
On the contrary, our method inserted a new node only when 
the local error was truly high; otherwise the data sample was 
assigned to the closet neuron. In conclusion, the classes 
learned by PHIAN represent the input distribution better than 
those learned by GNG in all cases. 

Our dual-phase framework helps improve the accuracy of 
heart disease diagnosis. Consequently, with the support 
location prediction technique in [24], this framework can be 
integrated in telemedicine systems to provide patients with 
cardiac care services anytime, anywhere. 

IV. Conclusion  

We proposed a dual-phase heart disease diagnostic 
framework. The risk level of a subject is firstly predicted by 
using confident frequent rules, which are extracted from risk 
factors. From our experimental results, we could see that such a 
rule-based method may lead to incorrect conclusions regarding 
a patient’s heart disease status. This is because sometimes 
subjects cannot describe precisely what has happened to them 
and medical researchers cannot accurately characterize how 
disease modifies the normal functioning of the body. To be 
certain about the presence of heart disease, doctors need to 
examine the beat-to-beat temporal variations in a patient’s heart 
by asking them to undertake various daily activities. To 
continuously discover HRV patterns, we applied the online 
artificial network PHIAN. With a dynamic network structure 
and incremental learning rule, new patterns can be learned 
while old ones are still preserved even though the environment 
changes.  

The performance of the proposed approach was assessed in 
terms of classification error for both rule-based and HRV 

pattern–based classification. Compared to the predictive 
approach, using the learning algorithms of SOM and GNG, our 
framework is better with regard to classification accuracy and 
neural network structure complexity. It is a new effective 
approach that can be applied to a telemedicine system to help 
predict the likelihood of heart disease within a patient. 
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