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Vehicle-to-grid presents a mechanism to meet the key 
requirements of an electric power system, using electric 
vehicles (EVs) when they are parked. The most economic 
ancillary service is that of frequency regulation, which 
imposes some constraints regarding the period and 
duration of time the vehicles have to be connected to the 
grid. The majority of research explores the profitability of 
the aggregator, while the perspective of the EV fleet owner, 
in terms of their need for usage of their fleet, remains 
neglected. In this paper, the optimal allocation of available 
vehicles on a day-ahead basis using queuing theory and 
fuzzy multi-criteria methodology has been determined. 
The proposed methodology is illustrated on the daily 
scheduling of EVs in an electricity distribution company. 
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I. Introduction 

Vehicle-to-grid (V2G) can be defined as a system in which 
there is the capability of controllable, bi-directional electrical 
energy flow between a vehicle and a power grid. Integrating 
large numbers of electric vehicles (EVs) into a power grid 
while simultaneously reducing their impacts is a major goal of 
V2G systems [1]–[2]. This task is primarily performed by an 
aggregator — an intermediary inserted between the vehicles 
performing ancillary services and the grid system operator. 
This aggregator receives ancillary service requests from the 
grid system operator and issues power commands to contracted 
vehicles that are both available and willing to perform the 
required services [3]–[9]. 

The most valuable ancillary service is that of regulation, 
which plays a significant role in maintaining the stable 
frequency of the grid [10]. The regulation control signal can 
call for either a positive or negative correction, often referred to 
in the industry as “regulation up” and “regulation down,” 
respectively. If load exceeds generation, then frequency and 
voltage drop; the system operator then relays a signal to 
generators requesting regulation up. When generation exceeds 
load and frequency increases, the operator requests regulation 
down and asks generators to reduce generation. 

The aggregation for regulation services has been proposed 
and explored in [11], with an optimal charging sequence for 
EVs selling only regulation. This formulation does not consider 
bulk discharging for a source of income and bids symmetric 
capacities of regulation up and down. It also assumes that 
periods of charging are decoupled from periods of performing 
regulation. The preferred operation point is always zero when 
performing regulation. In the previous paper, [11], a 
unidirectional V2G has been explored. In [12], this approach 
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has been extended to a bidirectional V2G, and in [13], it has 
been further extended to a combined provision of regulation 
and reserve. In [14], smart-charging optimization without V2G 
and optimized V2G with only regulation is formulated. This 
formulation did not consider the change in a battery’s state of 
charge (SOC) from dispatch of regulating power through 
symmetric bidding of regulation up and down. It also did not 
consider the bulk discharge of a battery during peak prices. 

These approaches focus on primary regulation and are 
mostly based on premises such as the global SOC of the 
aggregator’s EV battery portfolio can be predicted (the 
corresponding prediction error is bounded); that the EV 
population’s daily energy requirement can also be well 
predicted; and that the EV population, on average, is able to 
remain in the scheduled modes of aggregated operation for the 
entirety of each scheduled period of the optimization horizon 
[15]. This formulation takes into account unplanned EV 
departures during the contract periods and compensates 
accordingly, with each hour of EV availability having an 
associated unplanned departure probability. 

The perspective of the EV fleet owner, in terms of their 
concern for the availability of their fleet, is quite different. 
Many firms and public organizations operate their fleets of 
EVs in accordance with the various needs of the population; 
that is, they are given over to emergency vehicles, commercial 
delivery vehicles, taxis, courier fleets, and so on. The impact of 
the size of the electricity distribution company’s EV fleet in 
relation to its service quality is described in [16]. Some of these 
fleets have to perform tasks that may be known well in 
advance or that are sometimes repetitive, while many of them 
operate essentially in a demand-responsive mode. The 
demands for services are not known beforehand; thus, the 
fleets have to be deployed and managed in real time in an as 
effective manner as possible [17]. The requirements of the 
aggregator and of the EV fleet owner are, therefore, quite the 
opposite. While the aggregator needs as many vehicles as 
possible connected to the network, the EV fleet owner has to 
maintain a balance between service quality and revenue from 
ancillary services offered by EVs. 

In [18], a system that enables remote reservations of 
charging slots and provides route planning assistance has been 
proposed. This system can be very helpful to the aggregator, as 
they are obliged to know the driving behavior of EVs and have 
to deal with unexpected departures during scheduling periods. 
However, in our approach, we adopted a fixed contract period 
of 8h and an obligation toward the aggregator not to depart 
unexpectedly, to increase revenues for regulation services. 

In this paper, we are exploring a hypothetical problem that is 
put to a company owning a fleet of EVs. The company’s fleet 
of EVs operates to serve the different needs of its respective 

clients, and in this paper, we assume that each prospective 
vehicle mission requires some time to be fulfilled (service 
time). If the service time increases, then the company will 
suffer losses due to a reduction in its service quality. However, 
at the same time, when its vehicles are parked, the company is 
offering regulating services to the electricity network operator 
using V2G technology. Revenues from selling these services 
are directly related to the number of vehicles parked. Therefore, 
the optimization of vehicle daily scheduling is essential to 
increase the company’s revenue and reduce costs relating to 
service quality.  

A new, practical multi-criteria decision-making methodology 
for the daily scheduling of an EV fleet is proposed in this paper. 
The criteria (which are to be simultaneously fulfilled) for the 
new, practical multi-criteria decision-making methodology 
include the minimization of the service waiting time; the 
maximization of ancillary service revenue; and the 
minimization of costs incurred by vehicle charging. The 
number of client requests and service waiting times are 
modeled by queuing theory.  

The contribution of this paper lies firmly in its introduction 
of a practical EV scheduling methodology that takes into 
account the interests of both the clients and the aggregator. 
The methodology offers a more flexible way of priority 
assessment using the Bellman–Zadeh approach for 
multiobjective allocation of these vehicles. Queuing theory 
has been used for the determination of the time required for 
the service provision. 

This paper is organized as follows. After the introduction and 
literature review, details of the model parameters and the fuzzy 
multi-criteria decision-making technique are explained. In the 
next section, for the sake of illustration, the model is applied to 
an EV fleet belonging to a medium-sized power distribution 
company serving 50,000 consumers. Finally, we end this paper 
with some conclusions about the possibilities of the model’s 
application and suggest our further research intentions. 

II. Problem Formulation 

V2G and regulation contributions of each EV are facilitated 
by an aggregator. The aggregator signals each plugged-in EV, 
indicating to them the mode they should be in so that the 
aggregated EV fleet meets the aggregator’s energy and reserves 
day-ahead market positions. As stated in the previous section, 
the problem of optimization of V2G assets, or vehicle 
scheduling [9]–[15], has been exclusively treated as a one-
dimensional problem, with the maximization of aggregator 
revenue as the sole objective. The sources of aggregator 
revenue are energy delivered to the EV; the revenues from 
selling regulation and spinning reserve capacity; and the 
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revenues from selling energy. On the other hand, the sources of 
EV fleet owner revenue are the regulation and reserve services 
and energy sold to the spot market by the aggregator. 

The relations between EV fleet owner and aggregator are, 
however, much more complex regarding, above all, the vehicle 
availability. An unexpected early departure would cause serious 
problems for the aggregator, in terms of them being able to 
provide the contracted amount of power; therefore, it is 
mandatory that drivers actively notify the aggregator of an 
expected departure time upon plugging in. A driver would sign 
a contract that states they are to keep their vehicle connected to 
the grid for a certain amount of time in return for incentives, 
such as a life-time battery warranty [14]. 

On the other hand, many utility companies require the usage 
of vehicles for long periods of time, without the possibility   
of vehicle charging (for example, when repairing faults). 
Therefore, the EV fleet owner needs to be able to schedule the 
number of vehicles required for fulfilling customers’ daily 
activities, in advance, without decreasing the commercial 
quality of its services. 

Finally, the EV fleet owner requires that its vehicles be fully 
charged and ready to use in the most economically viable way 
possible; this is what makes the aggregator ultimately 
responsible for purchasing cheap power from the grid for the 
purposes of vehicle battery charging. 

For all these reasons, the problem of optimal allocation of 
vehicles requires a different approach; that is, one that 
incorporates multiple-criteria decision analysis. Multiple-
criteria decision-making refers to making decisions in the 
presence of multiple, usually conflicting, criteria. In our case, 
the criteria that have to be treated simultaneously are: 
minimization of total service time, maximization of expected 
ancillary service revenues, and the minimization of charging 
costs. All of the aforementioned criteria will be explained in the 
following subsections. 

1. Service Waiting Time 

For any utility company, the matter of its own commercial 
quality is a crucial issue. For example, in the case of an 
electricity company, commercial quality is directly associated 
with the transactions between the company and its customers 
and covers not only the supply and sale of electricity, but also 
the various forms of contacts established between the company 
and its customers [19]–[21]. There are several services that  
can be requested or expected by customers, such as new 
connections; increase in connection capacity; disconnection 
upon customer’s request; meter reading and verification; 
repairs and elimination of voltage quality problems; and so on. 
Each of these services is a transaction that involves both the 

extensive usage of vehicles and an aspect of commercial 
quality. The most frequent commercial quality aspect is the 
timeliness of services requested by customers. Guaranteed 
standards refer to service quality levels, which must be met in 
each individual case. If the company fails to provide the level 
of service required by the standard, then it must compensate 
accordingly. 

According to [19], for some aspects of commercial quality, 
such as the time until the start of the restoration of supply 
following failure of fuse of distribution network operator,   
the guaranteed service time varies from 3h for customers 
dependent on medical equipment to 12h for settlements with 
less than 5,000 inhabitants, at weekends and on the periphery 
of municipalities. 

The problem of service time minimization is usually solved 
through the use of queuing theory and queuing models as   
an abstraction of Markov chain models. In [22]–[25], an 
ambulance system using the “hypercube” model is studied to 
evaluate the extent to which an urban ambulance service 
should be decentralized. Green and Kolesar [26] assess its 
empirical validity to assign patrols to New York City police 
stations. They conclude that queuing theory provides good 
approximations of the system behavior. Singer and others [27]–
[28] configure a fleet whose vehicles receive calls while on 
route. The objective is to minimize operating costs subject to 
several constraints, including a maximum waiting time for 
customers, modeled using queuing formulas. 

In our model, the recommended vehicle parameters are 
obtained from different probability distribution models defined 
in queuing theory [29]. The M/M/s model assumes that all 
times between different service requests (inter-arrival times) are 
independently and identically distributed according to an 
exponential distribution and that all service times are 
independently and identically distributed according to another 
exponential distribution; in this model, the number of servers 
(crews or vehicles) is denoted by s. 

In the system with s vehicles, the probability that all vehicles 
are available is given by 
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where s is the number of vehicles, λ is the expected number of 
interventions per time unit, μ is the expected number of 
completed interventions per time unit, ρ is the utilization factor 
(ρ = λ/sμ), and m is the number of service requests. 

The probability that m service requests exist in the system is 
given by 
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The average waiting time for an intervention is obtained from 
the previous equations and is as follows: 
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Introducing α = λ/µ, the probability distribution of waiting 
times (t) becomes 

  10{ } 1 .
!(1 )

s
s tP

P W t e
s

 


   


        (4) 

When the service consists of essentially the same routine 
task, there is little variation in the service time required. The 
M/D/s model provides a representation of this situation 
because it assumes that all service times actually equal some 
fixed constant, with the Poisson input process having a fixed 
mean arrival time, λ. 

The M/D/s model assumes zero variation in the service times, 
and the exponential service time distribution assumes a very 
large variation. The Erlang distribution for the service time 
(M/Ek/s model) lies between these two extremes, with the 
following probability density function for the service time: 
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In this model, both the M/M/s and the M/Ek/s models are 
evaluated for different values of expected number of 
interventions per time unit and expected number of completed 
interventions per time unit. Concerning the multi-criteria model 
for the vehicle scheduling, the consumer service waiting time 
represents one of three considered criteria in the model. 

For the sake of illustration, the simulation results for two 
queuing models are represented in Fig. 1. The parameters of 
these models are as follows:  
■ The M/M/s model with λ = 9 requests/day, µ = 2 

interventions/day. 
 

 

Fig. 1. Probability distribution densities for n clients in the system
with 5 vehicles. 
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Table 1. Average service waiting times for different queuing models.

Number of vehicles 
W (min) for M/M/s 

model 
W (min) for M/Ek/s 

model 

5 132, 9 360 

6 34, 17 38, 4 

7 10, 80 9, 6 

 

 
■ The M/Ek/s model with the same parameters for the service 

requests, with the parameters of gamma distribution 
(α = 8, β = 0.5). 

The average waiting times for service for both models are 
represented in Table 1. 

2. Revenues from Ancillary Services 

The active power markets of V2G can be divided into four 
general groups [30]. These four groups are as follows: base 
load power — the bulk power generation that is running most 
of the time; peak shaving — during the hours of predicted 
highest power demand; spinning reserves — supplied by fast 
generators ready to respond in case of equipment or power 
supplier failures; and active regulation — used to keep the 
frequency and voltage steady. Typically, spinning reserves are 
called upon around 20 times a year. The duration of supply 
provided by a spin reserve is typically around 10 min, but the 
source must be able to last for up to 1h. Regulation is called 
upon for only a few minutes at a time, but the number of times 
can be from anywhere between 400 and 500 times per day. The 
utility supplier pays for spinning reserves and regulation 
sources, in part, on a per hourly basis as and when is necessary; 
however, base load and peak shaving are paid per kilowatt hour 
generated. 

The formulas for calculating revenues depend on the market 
that the V2G power is sold into and the number of services the 
EV fleet owner contracts with the aggregator. This study 
assumes that a V2G vehicle performs frequency regulation 
service only, which previous studies have shown is the most 
lucrative and realizable ancillary service for V2G [1]. A further 
assumption is that a V2G vehicle contracting and performing 
both regulation-up and regulation-down services results in a 
net-zero energy transaction, avoiding capacity issues related to 
vehicle SOC. 

For regulation services, revenue is derived from the payment 
for the maximum capacity contracted for in a given time 
duration and the payment for the actual kilowatt hour produced. 
For regulation services, there can be up to 400 dispatches per 
day, varying in power (Pdisp). For planning and scheduling 
purposes, to estimate revenue, we approximate the sum of Pdisp 
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by using the average dispatch-to-contract ratio (Rd-c) defined  
in [1]. The actual energy dispatched for regulation is some 
fraction of both the total power available and total power 
contracted for 

 d-c disp contr contr ,R E P t             (6) 

where Edisp is the total energy dispatched over the contract 
period (MWh), Pcontr is the contracted capacity (MW), and tcontr 
is the duration of the contract (h). 

For regulation up, the vehicle owners get paid for both the 
contracted power and energy delivered by spot market prices. 
For regulation down, it’s assumed that V2G owners will 
receive payment for the contractible power, minus the sum for 
the vehicle charging energy sold by the aggregator (no “free 
charge” policy). In this model, the general case of different 
time-of-use tariffs for the charging of batteries is analyzed. 

The total revenue for the period consisting of n segments is 
given by 

 cap e up ,
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where n is the number of time segments, ri is the revenue in the 
ith time period, capi

p is the capacity price in dollars per 
kilowatt hour in the ith time period, Pi is the contracted 
capacity in the ith time period, ti is the duration of the ith time 
period, ei

p is the spot market price of energy, and α is the 
aggregator factor. In the previous expression, the aggregator’s 
services for selling the energy to the EV owner are calculated 
through the aggregator factor α (α ≤ 1). The total dispatched 
energy for the regulation up is, therefore, given by 

 up dc-up .
i i iE Pt R                 (8) 

In this study, it is supposed that EV offers both regulation-up 
and regulation-down services, which is encompassed by the 
sole price capi

p in (7). Another premise is that the measurement 
of energy is bidirectional; this is necessary to register separately 
the energy used for battery charging from the energy 
withdrawn from a battery. 

3. Costs of Regulation 

Costs of regulation encompass the following two 
expressions: reg-upi

C — cost of regulation up (9) and reg-di
C — 

cost of regulation down (10). The aggregator price of energy 
has to account for the differences in energy delivered to and 
taken from the battery compared to what is measured at the 
meter. 

 reg-up up en conv ,
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 reg-d d en ,
i i i

C E c                 (10) 

 d dc-d .
i i iE Pt R                  (11) 

The costs per unit energy at time segment i, ( eni
c ), presented 

in (12), is a function of the electrical purchase price ( pei
c ), 

efficiency of the charger (ηconv), and battery degradation (cd). 
The battery degradation, calculated in (13), is a function of the 
total energy storage of the battery (Es); battery cost per kilowatt 
hour (cb); battery replacement labor and time (cl); and the 
number of cycles during the battery life (Lc) based on battery 
depth of discharge. 
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The total regulation costs are, therefore, calculated as the 
sum of the individual regulation costs (14). 
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Although it is possible to treat the total income as a net value; 
that is, the difference between the revenues (7) and costs (8), in 
the general case, these two values can be treated separately, as 
two independent criteria. This approach is adopted in this study, 
which will be explained in the next section. 

III. Methodology 

Multi-criteria risk assessment is based on multiple-criteria 
decision analysis — a scientific discipline that deals with 
methods and procedures for solving problems with several, 
often conflicting, criteria [30]. The following model 
encompasses several aspects of decision-making in the absence 
of certainty. The decision maker first chooses an action (xi) 
from a set of available actions or alternatives (X). Let X = {x1, 
x2, ... , xm} be a set of alternatives and G = {g1, g2, ... , gn} a set 
of goals (criteria) to be attained. A set of objective functions 
G(X) = {g1(X), … , gn(X)} is considered, and the problem 
consists of how best to simultaneously optimize all objective 
functions. When applying decision-making in a fuzzy 
environment, each objective function gj(X) is replaced by a 
fuzzy objective function or a fuzzy set Ḡj for j = 1, 2, … , k. 
The importance (weight) of a goal j is expressed by wj. The 
attainment of goal j by alternative i is illustrated by the 
membership function of xi in fuzzy set Ḡj; that is, 

  , ( ) .
j

j i iG
G x x               (15) 

When applying the Bellman–Zadeh approach [31]–[32], the 
maximum degree of implementing goals serves as a criterion 
of optimality. This conforms to the principle of guaranteed 
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result and provides constructive lines in obtaining harmonious 
solutions.  

A “decision” is defined as the intersection of multiple fuzzy 
sets and can be represented as 

 1 2 ,kD G G G                (16) 

with a membership function 

  ( ) min ( ) , 1,2, ... , .
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x j k  X       (17) 

The worst outcome of alternative k is then found using 

    min ( ) min min ( ) .j j i iD D
X x        (18) 

Using (19), it is possible to obtain the best outcome of 
alternative k as 

    max ( ) max min ( ) .j j i iD D
X x        (19) 

The optimal alternative is then 

   arg max min ( ) .O
j i iD

X x       (20) 

To obtain the solution to (20), it is necessary to build 
membership functions μG(x) reflecting a degree of achieving 
own optima by gi(X). This condition is satisfied by the use   
of membership functions, which for maximized objective 
functions, are given as  
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Or, it is given by membership functions, which for minimized 
objective functions, are given as 
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The alternatives are ranked in descending order of the above 
membership degree. This method provides a simple logic-
driven procedure to aggregate attribute attainments of 
alternatives and to rank the alternatives on such an aggregation. 
Using the weights as exponents has the effect of making the 
membership function of decision set D more determinable by 
attributes that are more important. However, attribute weights 
are not considered as fuzzy sets, and they should be taken as 
crisp values. 

In our methodology, the vector of alternatives, X = {x1, x2, 
… , xm}, is composed of multiple combinations of parked 
vehicles, used by the aggregator, and vehicles used freely by 
the EV fleet owner. The number of fuzzy objective functions or 
fuzzy sets is reduced to three in this study (revenues, costs, and 
service time), but these sets can be enlarged by other criteria, 
such as those relating to environmental, social, or marketing 
conditions. 

The best alternative for the aggregator is to dispose with 

vehicles (and contracted power) during the whole contracted 
period. Since an EV can depart unexpectedly during a 
scheduling period, it is necessary for the aggregator to 
compensate for this lost capacity by drawing more power for 
the remaining vehicles (that is, to over dispatch them). To do so, 
the aggregator must leave some reserve in existing vehicles 
(under schedule them). This compensation for the lost capacity 
can be estimated by the following compensation factor [12]: 

 
probability_of_departure

Comp( ) 1 .
1 probability_of_departure
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

    (23) 

In our study, to reduce this compensation factor to zero, we 
adopt a fixed time period of vehicle leasing to the aggregator. 

Weighting factor wj, in expressions (21) and (22), is 
determined by the AHP method. The original AHP was 
developed by Thomas L. Saaty in the late 1970s [33]. In this 
method, a person’s judgments are represented as crisp values. 
Terms such as “much more important,” “more important,” 
“equally important,” “less important,” and “much less 
important” are defined using Saaty’s scale for pairwise 
comparisons [33]. 

The AHP method was developed to optimize decision-
making when one is faced with a mix of qualitative, 
quantitative, and sometimes conflicting factors. AHP has been 
very effective in making complicated and often irreversible 
decisions. AHP uses the judgments of decision-makers to form 
a decomposition of problems into hierarchies. This method is 
primarily applied to the field of multi-criteria decision-making, 
where on the basis of every defined criterion set and attribute 
value of each alternative, the most acceptable solution is 
accepted; alternatively, the complete layout of the alternative 
importance in a model is shown. 

In this particular case, a comparison scale of five points has 
been used. The elements of a weighting matrix, T, are defined 
as follows: 
■ If i is much more important than j, then tij = 3. 
■ If i is more important than j, then tij = 2. 
■ If i and j are equally important, then tij = 1. 
■ If i is less important than j, then tij = 0.5. 
■ If i is much less important than j, then tij = 0.3. 
■ The eigenvector of matrix T represents the weighting vector 

w. 
The Bellman–Zadeh approach permits one to realize an 

effective (from a computational standpoint) and rigorous (from 
the standpoint of obtaining solutions) method of analyzing 
multiobjective models. Finally, its use allows one to preserve a 
natural measure of uncertainty in decision-making and to take 
into account indices, criteria, and constraints of a qualitative 
nature. The methodology is utilized in the case of optimal 
distribution of vehicles to network missions and regulation 
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services. 

IV. Case Study 

The case study in this paper is concerned with the scheduling 
of a nine-car-strong EV fleet supported by one electricity 
distribution utility. The EVs in this fleet serve an urban area and 
remain on standby for call-outs relating to repair faults within 
the urban area; the EVs are assumed to be available for three 
distinct periods during the day. The first of these periods is 
between midnight and 8 a.m. and is characterized by, on 
average, 7 reported faults (λ = 7/8h), with an average of 2.67h 
per intervention (three repaired faults per crew during this 
period μ = 3/8h). The parameters of the second and more 
intensive period, which is from 8 a.m. to 4 p.m., are λ = 10/8h 
and μ = 4/8h, while in the third period, which is between 4 p.m. 
and midnight, the parameters are λ = 8/8h and μ = 3/8h (see  
Fig. 2). The values in Fig. 2 are simulated for illustration 
purposes.  

The number of customer complaints or requests (denoted by 
λ) represents the total number of calls during the day. The 
average number of repaired faults is, however, not related to the 
total number of faults, but to the number of accomplished 
missions of one service crew (one vehicle). A slight increase in 
the number of repaired faults per crew during the second 
period (four repaired faults during this period versus three 
repaired faults during periods one and three) is explained by the 
more organized logistic service during the working hours. This 
company has a contract with an aggregator who is paying for 
the usage of EVs for regulation services, by the prices varying 
during the day (see Fig. 3). Day-ahead ancillary service prices 
are the actual prices used in the ERCOT system [34]. For each 
of the three periods, we have to find the optimal number of 
vehicles that should be parked and connected to the charger/ 
 

 

Fig. 2. Average values for the number of requests for service 
(blue line) and accomplished tasks (red line). 
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Fig. 3. Hourly energy and EV usage prices for July 7, 2013. 
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Fig. 4. Hourly prices for ancillary services on July 7, 2013. 
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inverter combination while simultaneously minimizing the 
service waiting time, maximizing expected revenues of 
ancillary services, and minimizing charging costs. In addition, 
the spot prices on the electricity market, ei

p  from (7), are 
represented in Fig. 3. Day-ahead energy prices are also the 
actual prices used in the ERCOT system [34]. Hourly ancillary 
service prices are shown in Fig. 4. Finally, the price that the EV 
fleet owner is paying the aggregator; that is, the cost for 
charging, including degradation costs (12), is presented in   
Fig. 5. Parameters inherent to the type of vehicles used in this 
calculation, together with the adopted values of dispatch-to-
contract ratios and the period of the regulation services are 
presented in Table 2. Using (3), (7), and (14), values for 
different combinations of vehicles scheduled for regulation 
purposes (Nreg) and vehicles for regular daily activities (Nserv), 
for the three predefined time periods, are presented in Tables 3, 
4, and 5. In the cases where Nserv is small, the resulting unstable 
situations, “stockpiling” of requests, are marked as “N.A.” in 
the tables. 
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Fig. 5. Hourly prices for battery charging. 
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Table 2. Parameters of vehicles and regulation services. 

Parameter Value 

P(kW) 20 

Rdc-up 0.1 

Rdc-d 0.1 

ηconv 0.9 

cd($/kWh) 0.075 

t(h) 8 

N 9 

 

Table 3. Criteria values for the period from midnight to 8 a.m. 

Nreg Nserv r($) C($) t(min) 

1 8 23.9 12.64 160 

2 7 47.8 25.28 160 

3 6 71.7 37.92 160 

4 5 95.6 50.56 160 

5 4 119.5 63.2 163 

6 3 143.4 75.84 177 

7 2 167.3 88.48 288 

8 1 191.2 101.12 N.A. 

9 0 215.1 113.76 N.A. 

 

 
In the next step, using expressions (21) and (22), the values 

presented in Table 6 are obtained. The weighting factors used 
in the examples for revenues, costs, and service waiting times 
are w1 = 0.2, w2 = 0.3, and w3 = 0.5, respectively. The optimal 
alternative for each period using (20) is: six vehicles for 
ancillary services and three for customer services (first period); 
five vehicles for ancillary services (second period); and finally,    

Table 4. Criteria values for the period from 8 a.m. to 4 p.m. 

Nreg Nserv r($) C($) t(min) 

1 8 21.64 12 120 

2 7 43.28 24 120 

3 6 64.92 36 121 

4 5 86.56 48 126 

5 4 108.2 60 145 

6 3 129.84 72 288 

7 2 151.48 84 N.A. 

8 1 173.12 96 N.A. 

9 0 194.76 108 N.A. 

 

Table 5. Criteria values for the period from 4 p.m. to 12 p.m. 

Nreg Nserv r($) C($) t(min) 

1 8 57.70 19.04 160 

2 7 115.4 38.08 160 

3 6 173.1 57.12 162 

4 5 230.8 76.16 171 

5 4 288.5 95.20 205 

6 3 346.2 114.24 542 

7 2 403.9 133.28 N.A. 

8 1 461.6 152.32 N.A. 

9 0 519.3 171.36 N.A. 

 

Table 6. Criteria membership values for different alternatives. 

Period I (0h–8h) Period II (8h–16h) Period III (16h–24h)
 

μ(r)w1 μ(C)w2 μ(t)w3 μ(r)w1 μ(C)w2 μ(t)w3 μ(r)w1 μ(C)w2 μ(t)w3 

1 0.54 1.00 1.00 0.53 1.00 1.00 0.64 1.00 1.00

2 0.62 0.96 1.00 0.61 0.96 1.00 0.74 0.96 1.00

3 0.67 0.91 1.00 0.66 0.92 0.99 0.80 0.92 1.00

4 0.71 0.87 1.00 0.70 0.87 0.96 0.85 0.87 0.99

5 0.74 0.81 0.98 0.73 0.81 0.83 0.89 0.81 0.94

6 0.77 0.75 0.90 0.76 0.75 0.00 0.92 0.74 0.00

7 0.80 0.65 0.00 0.78 0.66 0.00 0.95 0.66 0.00

8 0.82 0.53 0.00 0.80 0.54 0.00 0.98 0.53 0.00

9 0.84 0.00 0.00 0.82 0.00 0.00 1.00 0.00 0.00

 

 
four vehicles for ancillary services and five vehicles for 
customer services (third period). In Table 6, the first column 
represents the number of vehicles intended for the purpose of 
regulation (Nreg). Using (20), the minimal values given in the 
rows for each particular period are selected (values are marked 
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bold in the table), and after that, maximal values denoting the 
optimal alternative are determined (marked bold and italic in 
the table). The optimal alternative for each period, using (20), 
is: six vehicles for ancillary services and three for customer 
services (first period); five vehicles for ancillary services 
(second period); and finally, four vehicles intended for 
regulation (third period). 

Taking into account the low number of service calls during 
the night-time period, it seems entirely logical that there should 
be an increased number of vehicles that should be parked and 
connected to the grid for regulation purposes. However, in 
periods two and three, the high price for regulation services 
could be misleading when drawing such a conclusion. In this 
particular case, the decision-maker places customer satisfaction 
in first place, in comparison to costs and revenues. The result is 
that a smaller number of vehicles are required to power market 
services in comparison to the number required for customer 
services.  

V. Conclusion 

In this paper, the problem of optimally scheduling a fleet of 
EVs to successfully complete their daily activities, including 
the offering of frequency regulation services using V2G 
technology, has been considered. This paper contributes an 
optimal solution weighted more in favor of the EV fleet owner 
than the aggregator — one that is made possible through the 
use of queuing theory. Furthermore, the scheduling is treated as 
a multi-criteria optimization problem — one that includes 
revenues, costs, and commercial quality in its optimization 
criteria.  

The use of the Bellman–Zadeh approach has served as a 
basis for solving this optimization problem, where the 
maximum degree of implementing goals serves as a criterion 
of optimality. The proposed methodology has been 
successfully implemented on the daily scheduling of an EV 
fleet served by an electricity distribution company. The 
elaborated case encompassed only three criterion and offering 
of regulation services, only. Further research will focus on an 
enlargement of both the criteria set and the ancillary services 
set. 
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