장건강 향상은 가장 손쉬운 수익성 개선 방법이다

장 건강은 의학과 동물건강에 자주 사용되는 용어이자 정의는 널리 되어있다. 영양을 통한 장미생물상 균형과 면역반응성 조절 및 성장생산성 향상 사이에 합리적 연관성을 얻질단백질 생산요구 총조에 중요하다. 동물에서 대사 및 면역항성 성장성은 상호작용하는 영양소들 검출관리와 질병원들 검출관리수단이다. 영양소, 독소들, 그리고 무이(無益)세균에 대한 면역반응은 유전자 및 가금의 생산환경의 영향을 받는다. 장내 미생물생태계의 부정적 영향력 극복을 위한 효소제, 프로바이오틱스 같은 사료첨가제들의 계군적용에 의한 장건강과 생산성 조정 역할이 밝혀지고 있다.

균형 미생물상과 영양은 상호작용한다

가금의 장미생물상(microbiota) 미생물군 유전자(microbiome) 균형은 장건강 달성에 가장 중요하다. 장미생물상은 장현태, 영양, 장절환 및 면역반응에 영향을 미치기 때문이다. 영양은 장미생물군집(microbial communities)과 숙주 면역반응에 영향을 미치고, 장미생물상은 장 점막층, 상피세포들 그리고 면역세포들의 동적(動的)균형에 영향력을 행사한다.
성숙 장미생물상으로의 발달은 병아리부화시부터 시작한다. 부화작후 부터 환경과 사료세균이 장에 부착되기 시작하므로, 가끔과 미생물의 사이좋은 관계발전이 장건강 달성을 위한 관건이 된다. 특히 밀집사육 환경에서는 방어적 장 미생물상 발달이 생산성 향상을 위하여 넘어가야 할 과제로서 매우 중요하다. 갈채에 존재하는 무-익세균(無益細菌; non-beneficial bacteria) 이 신속히 어떤 병아리 장에서 증식하여 건강에 영향을 미치기 시작한다. 영양과 육추환경에 따라 2~3주 이내에 성숙단의 전형적 소장 미생 물상이 확립되고, 다음에 안정적 세균상장이 지속한다(Snel 등, 2002). 성숙부로일러의 장은 500종 이상 세균의 숙주가 되며, 이들은 그램- 음성 세균 보다 항생물질 감수성이 높은 그램- 양성 세균들이다. 이 세균들의 수는 가금세포 수의 10배가 넘는다. 충분히 성숙한 미생물상은 불균형(不均衡)시에 문제가 될 수 있는 무-익세 균을 함유한다. 미생물상 불균형은 면역기능을 저하시켜 이어져 진행하는 염증반응 해소를 위한 에너지를 소비하며 인성 순실을 증가시킨다. 미생물상 불균형이 치는 장 대사의 부정적 영향은 일당 에너지소비의 20~36%를 증가시켜서 성장생산성에 미치는 정도로 보이는 질병성 변형 오래전에 미생물상 불균형은 사료요구량을 저하시킨다는 증명이 많다.

소장내 미생물과 성장은 가금의 영양소 소화 용지하와 관련이 있다(Smits, 1996). 불소화 영양소들이 장 후반부로 흐리 들어가면 성장생산성에 영향을 미칠뿐만 아니라 미생물상 불균형으로의 전환에 직접 기여하여 사료요구율과 가금건강에 나쁜 영향을 미친다(Romero 등, 2011).

성장촉진용 항생제


항생제 내성과 사료금지: AGPs가 가금사용 개시 한해 전 1945년에 항생제들을 비-치명적 투여량 사용은 저항성 유전자 생성으로 세균들 생존을 가능하게 한다고 공고되었다. 한편 항생제 내성은 가장 일반적인 전세계적 사례의 실시된 인 균인 살모넬라종들(Salmonella spp)과 감염로 박터 종들(Campylobacter spp)의 식품사슬을 통한 전파가 가능하다는 증명이 쌓이고 있다. 식품 안전성 검련에 따르면, 지난해 미국의 네 개 주들 항생제 사용금지 사례에 서명하였고, 알레르기인 전세계적 항생제 금지의 고려하고 있다. 미국의 세 번째로 가장 큰 식품 회사인 퍼듀프드(Perdue Foods)는 최근에 가금 재료에 많은 적은 사람용 항생제 투여를 완전중지성명을 발표하
신기술 신이론

었다. 식품회사 맥도날드(McDonald’s), 칠필레(Chick-Fil A) 및 타이슨(Tyson)은 모두 사료용
감소를 명세하였다. 이미 EU는 2006년에 한국
에서는 2011년에 전면적 사료가 금지되었다.

아직도 사용되는 항생제 : 성장 생산성 향상
을 위한 AGP의 의존 때문에 사료용 항생제를 사
용감소 규제법률은 전세계의 주요 가금산산지
역에서 큰 충격을 주고 있다. 미국에서는 한해
판매항생제들의 80% 이상이 축산용으로 사용
된다. 중국은, 세계에서 두 번째로 큰 가금산산
과 가장 많은량의 사료수입국으로 다른 나라들
보다 더 많은 양의 항생제들을 생산하여 사용하
고 있다. 사용되는 항생제들의 반 이상이 축산
용이다. 부라질은 전세계에서 첫번째가금육 생
산국이지만, 모범적 생물학적 안전성 실천으로
사용량이 낮다. 부라질 정부의 대규모농장과
기계화기술은 부로일리의 항생제들의 치료적
사용 필요성 증가를 의미한다.

안정장생태계 유지용 항생제대체제 : 가금생
산자들에게 치료량이하 항생제 사료량 감소로
인한 동물 생산성과 생존율 감소를 개선하는 방
법들을 찾는 것은 무엇보다도 중요하다. 한편 안
정 장생태계 보장을 위하여 무익(無益)미생물들
과 싸우기 보다는 유익(有益)미생물들의 집중 양생
(養生)에 의한 생산성향상 추구도 중요하다.

효소제의 프레바이오틱스 적용들

사료첨가제로서 크실라아제(xylanase), 아
밀라아제(amyrase) 및 프로테아제(protease)같
은 효소들 사료는 장 미생물량 균형을 개선한
d. 심이지장(duodenum), 공장(jejumun) 및
화장(ileum)에서 '기질들(substrates)'로 사용
되는 불소화양소들의 양을 감소시키기 때문
이다(Romero 등, 2013, 2014). 옥수수-기반 사
료들은 소화성이 높으나, 옥수수는 경작과 수확
상황들에 따라서 섬유질 함량이 높아지므로 품
질이 다양하다. 크실라아제 같은 효소들은 옥
수수-기반 및 소맥-기반 사료들에서 불소화
아라비녹실란(α-arabinofuranose) 분해에 두드러
진 영향력을 행사한다(Kiarie, Romero 및
Ravindran, 2014). 프로테아제는 세포벽들의
구조 단백질 분해로 들어나는 섬유의 소화를
돕는다(Colombatto와 Beauchemin, 2009). 크
실라아제와 프로테아제는 옥수수-용출물합
유 캡슐(DCGS)에서 펜토산(paracels)과
단백질 추출에 공동작용을 한다.

프로테아제는 세포벽 구조단수화물 분리 : 부
로일리 사료들에서 프로테아제 반응으로 크실
로즈(Xylose)와 아라비노스(arabinose)의 소실
율이 증가한다(Olukolra 등, 2012). 프로테아제
의 정량적 효능은 단백질소화이지만, 프로테아
제의 섬유 가용화활용 존재는 분명하다. 프로테
아제는 세포벽들의 구조단백질들을 분리하여
섬유소화를 개선을 돕는다(Colombatto과
Beauchemin, 2009). 섬유소화를 개선은 영양
소화량을 높이고 가금 장내 균형미생물량 형성
을 촉진하는 효과들을 가진다.

불소화단백질 분해로 장기능개선 : 불소화단
백질은 프로테아제 및 프로테아제-크실라아
제 혼합물들로 소화가 가능하다. 한편 장내 불
소화단백질 존재는 가금의 괴저성장염(處腫性

144 월간양계 2015. 4월호
腸炎：necrotic enteritis) 관련 클로스터드피 프린젠스 정착 및 콕시들증 발병 요인 중 하나이다(Williams, 2005). 불소화단백질과 불소화천문은 괴저성장염 관련 세균 불균형 중(dysbacteriiosis)의 취약요인(predisposing factor)이 되는 역할을 하고, 프로테아제 체가는 아이메리아 종들(Eimeria spp.)으로 공격한 가금들의 생산성이 개선된다(Peek 등, 2009). 콕시들 아이메리아 종들(Eimeria spp.)은 괴저성장염의 취약요인들 중 하나이다.

프로테아제는 불소화단백질 저하작용 뿐만 아니라 직접적 혈액생산을 자극하여 콕시들공격들에 대한 달의 더 양호한 생산성 반응들과 관련이 제안되었으나(Peek 등, 2009), 아직 확인이 날아있다.

크실라나아제의 아라비노-크실로 올리고당들 (AXOX) 생산 : 크실라나아제 같은 효소들은 소장에서 가용성이 아라비녹실란(arabinoxylans)을 가수분해하여 아라비노스-크실로 올리고당들(arabino-xylo-oligosaccharides: AXOX)을 생성한다. AXOX은 소화물질성을 저하시김 뿐만 아니라 유익균들 성장을 선여적으로 자극하는 프로바이오틱스(prebiotics) 기능을 수행한다.

한편 특히 AXOX 맹장발효로 장내에 단체지방산(SCFA)들이 생성되어 동물의 에너지원으로 이용된다. 인비트로에서 소맥강을 크실라나아제 프로바이오틱스로 가수분해로 유도된 단체 arabino-xylo-oligosaccharides(AXOS)구조에 따른 사료급여 휴 맹장내에서 비피더스 균수가 달라졌다. 건강관련 곡물유래 AXOS는 제2형 당뇨병환자에서도 반응 물기와 저조도를 정상화(Okazaki 등, 1990)하여 혈액 포도당 수준들을 개선한다.


프로바이오틱스의 유익성

사료첨가 효소들처럼 프로바이오틱스(probiotics)는 생산성개선을 지원한다. 프로바이오틱스는 살아있는 미생물 사료첨가제들로 숙주동물의 장미생물 균형개선에 유익한 작용을 한다(Fuller 등, 1989). 유익작용 양식은 가금 장(腸)에 다양한 침윤한 미생물군의 확립유지를 보호자들과 다르다. 장 환경에 안정 미생물군이 확립 유지되면 동물생산성 저 가능성이 있는 미생물군집합을 억제한다(Lee 등, 2010).

포자형성 바실리스 : 프로바이오틱스는 가금생산업계에서 유용한 항생물질성장촉진제들(AGPs) 대체제들의 중요한 수단들로 떠오르고 있다. 포자(酵母)형성 바실리스 속인 B. amylo-quiraciens, 바실러스리세니프로르시스(B. licheniformis), 바실러스푸밀리스(B. pumilis)

이와 같이 바실러스는 환경변화와 치료제 과 사용 같은 스트레스시에서 가금 생산성을 높이는 데, 성장중인 동물들에서는 대장균들의 균집화 역제로 장벽 효모발달을 촉진하고 동물의 영양소 흡수능력을 향상한다(Lee 등, 2010). 다른 프로바이오틱스들과는 달리 열(熱)과 고압(高壓)에 견디는 바실러스 속들은 사료산업에 일반적으로 사용되는 적대적 고압증기 팰럿화과정에서 생존하고, 생존기간이 길어서 사료산업 자들에게 유익하다.

다중-바실러스 균주: 최고 성장생산성을 달성하는 가장 효과적 균주분리 확인실험은 바실러스 공급원 선정에 필요하다. 다중-바실러스 균주는 동일 단일균주보다 더 효과적이다. 부화 후 첫주의 다중-바실러스균주 집중으로 분명한 사료요구율 개선작용이 증명되었다. 부화후로부터 28일정까지 균사성 장열에 걸린 부로일러에서 다중-바실러스 균주작용으로 증체가 개선되었다(도표 1).

<도표1> 바실러스 다중-균주는 0~28일령 탑에서 균사성 장열 공격시에 증체를 개선하였다.
(주) Body weight gain(g):증체중(g), FCR: 사료요구율, Unchallenged control: 대조 미침응, Challenged control:대조 균사성장열균 집중, CC+BMD: 균사성장 열균 집중+바실러스 다중균주, CC+DFM: 균사성장열균집중+다중균+미생물.
발가락바닥 피부염 : 다중-바실러스 균주 프로바이오틱스는 발가락 상처에 현저한 개선효과가 되었다. 발가락바닥피부염(Footpad dermatitis)은 특히 가금류 가금들에서 주로 관찰되는 황색포도상구균(Staphylococcus aureus)과 대장균(E. coli) 같은 세균감염들에 의해서 발병한다. 발가락바닥피부염은 사각적 조직결합 흔드로 저품질 닭발이 되므로 생산자들에게 중요한 문제였다. 가금사료에 다중-바실러스 균주 급여는 발가락바닥피부염 징후를 개선하였다.

응량 적정화 : 각 생산단계에서 프로바이오틱스의 적정량 결정은 공급자와 소비자의 공통조화가 요구된다. 가금장내에서 세균조생과 중식

을 위한 영양소등과 위치는 제한되므로 과양투가는 양호한 성적을 얻는데 불필요하다. 실제로 다중 바실러스 균주는 유익성 제공 없이 바로 장관을 통과할 뿐만 아니라 균주들은 위장관에서 창생

부위들과 협합하고 염증반응원인의 역할을 한다. 이것은 가금이 성장 생산성으로 향후 에너지를 소비하게 한다. 응량 적정화는 바실러스가 동물의 변용기관에 파부하 없이 균주의 발생과 증식이 가능한 약이다.

다른참가자들과의 시너지 : 바실러스 균주들의 다른 장점을 유기한, 형성 제공(Einthoven과 van der Lee, 2004) 및 효소제를 같은 여러 생산상황의 영양참가자들과의 양립(공존)성이이다(도표 2). 몇 개의 섬유성 곰류 부산물을 함유한 옥수수/대두백 효소를 급여한 정상 부모암림을 사용한 실험에서, 다중 균주 바실러스 프로바이오틱스와 크실라나아제, 아밀라아제 및 프로테아제 효소들의 첨가함에 절소보정의 생산성 대사능지

(AMEn)값이 유의하게 증가하였었다.(Romero 등, 2013). 이러한 대사능지와 증가들은 한편 특정 과사성장열(NE) 공격 모델에서도 관찰 되었다(Southern Poultry Research Georgia, USA, 2013). 앙족 실험들에서 훈련제

품은 체중보정 사료요구(FCR) 개선으로 사료 가격을 기준으로 공격한 대조 대비 생산중 증가량 비교 비율로 14%의 수익으로가 증가를 주어서, 실험적 NE 공격 상황에서 높은 경제적 가치를 설명한다. (다음 호에 계속)