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W-RESOLUTIONS AND GORENSTEIN CATEGORIES WITH

RESPECT TO A SEMIDUALIZING BIMODULES

Xiaoyan Yang

Abstract. Let W be an additive full subcategory of the category R-
Mod of left R-modules. We provide a method to construct a proper WH

C
-

resolution (resp. coproper WT

C
-coresolution) of one term in a short exact

sequence in R-Mod from those of the other two terms. By using these
constructions, we introduce and study the stability of the Gorenstein
categories GC(WWT

C
) and GC(WH

C
W) with respect to a semidualizing

bimodule C, and investigate the 2-out-of-3 property of these categories
of a short exact sequence by using these constructions. Also we prove
how they are related to the Gorenstein categories G((R⋉C)⊗RW)C and
G(HomR(R ⋉ C,W))C over R ⋉ C.

1. Introduction

Auslander and Bridger [1] introduced the modules of finite G-dimension over
a commutative Noetherian ring R, in part, to identify a class of finitely gen-
erated R-modules with particularly nice duality properties with respect to R.
They are exactly the R-modules which admit a finite resolution by modules of
G-dimension 0. As a special case, the duality theory for these modules recov-
ers the well-known duality theory for finitely generated modules over a Goren-
stein ring. This notion has been extended in several directions. For instance,
Enochs and Jenda [3] introduced the Gorenstein projective modules and the
Gorenstein injective modules; these are analogues of modules of G-dimension 0
for the non-finitely generated arena. Foxby [5], Golod [6] and Vasconcelos [12]
independently initiated the study of semidualizing modules (under different
names) over a commutative Noetherian ring. White and other peoples investi-
gated them in commutative (possibly non-Noetherian) rings. Recently, Holm,
Jørgensen [7] and Sather-Wagstaff, Sharif, White [11] unified these approaches
with the GC -projective modules, the GC -injective modules and the GC -flat
modules.
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Let A be an abelian category and C an additive full subcategory of A.
Sather-Wagstaff, Sharif and White introduced the Gorenstein category G(C),
which unifies the following notions: modules of Gorenstein dimension zero [1],
Gorenstein projective modules, Gorenstein injective modules [3], V -Gorenstein
projective modules, V -Gorenstein injective modules [4], and so on. Huang
[9] provided a method to construct a proper C-resolution (resp. coproper C-
coresolution) of one term in a short exact sequence in A from those of the other
two terms. By using these constructions, he answered affirmatively an open
question on the stability of the Gorenstein category G(C) posed by Sather-
Wagstaff, Sharif and White [10], and also proved that G(C) is closed under
direct summands.

Let R be a ring, and let R-Mod be the category of left R-modules and W
an additive full subcategory of R-Mod. Inspired by the works of Huang [9], in
Section 2 we provide a method to construct a proper WH

C -resolution (resp. co-
proper WT

C -coresolution) of one term in a short exact sequence in R-Mod from
those of the other two terms. Section 3 is devoted to introducing and studying
the stability of the Gorenstein categories GC(WWT

C) and GC(W
H
C W) with re-

spect to a semidualizing bimodule C, and investigating the 2-out-of-3 property
of these categories of a short exact sequence by using these constructions. Also
we prove how they are related to the Gorenstein categories G((R⋉C)⊗R W)C
and G(HomR(R ⋉ C,W))C over R⋉ C.

2. Preliminaries

This section is devoted to recalling some definitions and notations. For
terminology we shall follow [7], [8] and [9].

Definition 2.1. An (R,R)-bimodule C is semidualizing if it satisfies the fol-
lowing:

(1) RC admits a degreewise finite R-projective resolution.
(2) CR admits a degreewise finite R-projective resolution.
(3) The homothety map RRR → HomR(C,C) is an isomorphism.
(4) The homothety map RRR → HomRop(C,C) is an isomorphism.

(5) Ext>1

R (C,C) = 0.

(6) Ext>1

Rop(C,C) = 0.
Let C be a semidualizing (R,R)-bimodule, and set

WT
C = {C ⊗R W |W ∈ W} and WH

C = {HomR(C,W )|W ∈ W}.

The Auslander class of C is the subcategory AC(R) of left R-modules M

such that
(1) TorR≥1(C,M) = 0 = Ext≥1

R (C,C ⊗R M), and
(2) The natural map M → HomR(C,C ⊗R M) is an isomorphism.
The Bass class of C is the subcategory BC(R) of left R-modules N such that

(1) Ext≥1

R (C,N) = 0 = TorR≥1(C,HomR(C,N)), and
(2) The natural evaluation map C⊗RHomR(C,N) → N is an isomorphism.
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Definition 2.2. Let C be a semidualizing (R,R)-bimodule. Then the direct
sum R⊕ C can be equipped with the product:

(r, c) · (r′, c′) = (rr′, rc′ + cr′).

This turns R ⊕ C into a ring which is called the trivial extension of R by C

and denoted by R⋉C. There are canonical ring homomorphisms R ⇄ R⋉C,
which enable us to view R-modules as R ⋉ C-modules, and vice versa. This
will be used frequently.

Definition 2.3. Let X be a class of left R-modules. An exact sequence of
R-modules is called HomR(X ,−)-exact if it remains still exact after applying
the functor HomR(X ,−). Let M be a left R-module. An exact sequence
· · · → X1 → X0 → M → 0 of R-modules with all Xi in X is called an X -
resolution of M . The above exact sequence is called a proper X -resolution of
M if it is an X -resolution of M and is HomR(X ,−)-exact. Dually, the notions
of a HomR(−,X )-exact exact sequence, an X -coresolution and a coproper X -
coresolution of M are defined.

Notation 2.4. Throughout this paper, R is an associative ring with identity,
R-Mod is the category of left R-modules, W is an additive full subcategory
of R-Mod that is closed under isomorphisms and C is a fixed semidualizing
(R,R)-bimodule of R.

We work within the derived categoryD(R) of the category of left R-modules;
cf. e.g. [2], and consistently use the hyper-homological notation from [2, Ap-
pendix], in particular we use RHomR(−,−) for the right derived Hom functor
and −⊗L

R − for the left derived tensor product functor.

3. W-resolutions and coresolutions with respect to

a semidualizing bimodule

In this section, we give a method to construct a proper W-resolution (resp.
coproperW-coresolution) of the last (resp. first) term in a short exact sequence
from those of the other two terms, and we also give a method to construct a
properWH

C -resolution (resp. coproperWT
C -coresolution) of the last (resp. first)

term in a short exact sequence from those of the other two terms.
The following result provides a method to construct a proper W-resolution

of the last term in a short exact sequence from those of the first two terms.

Theorem 3.1 ([9, Theorem 3.6]). Given a short exact sequence of left R-

modules

0 −→ X1 −→ X0 −→ X −→ 0.(3.1)

Assume that

Wn
0 → · · · → W 1

0 → W 0

0 → X0 → 0,(3.2)

Wn−1

1
→ · · · → W 1

1 → W 0

1 → X1 → 0(3.3)
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are proper W-resolutions of X0 and X1 respectively.

(1) If the exact sequence (3.1) is HomR(W ,−)-exact, then we get the follow-

ing proper W-resolution of X

Wn
0 ⊕Wn−1

1
→ · · · → W 1

0 ⊕W 0

1 → W 0

0 → X → 0.(3.4)

(2) If both the exact sequences (3.2), (3.3) and (3.1) are HomR(−,WT
C )-exact,

then so is the exact sequence (3.4).

Corollary 3.2 ([9, Corollary 3.7]). Given an exact sequence of left R-modules

Xn −→ · · · −→ X1 −→ X0 −→ X −→ 0.(3.5)

Assume that

W
n−j
j → · · · → W 1

j → W 0

j → Xj → 0(3.6(j))

is a proper W-resolution of Xj for 0 ≤ j ≤ n. If the exact sequence (3.5) is

HomR(W ,−)-exact, then

n⊕

i=0

Wn−i
i → · · · → W 1

0 ⊕W 0

1 → W 0

0 → X → 0(3.7)

is a proper W-resolution of X. Furthermore, if the exact sequence (3.5) and

all (3.6(j)) are HomR(−,WT
C )-exact, then so is the exact sequence (3.7).

The next two results which are dual to Theorem 3.1 and Corollary 3.2 re-
spectively provide a method to construct a coproper W-coresolution of the first
term in a short exact sequence from those of the last two terms.

Theorem 3.3 ([9, Theorem 3.8]). Given a short exact sequence of left R-

modules

0 −→ Y −→ Y 0 −→ Y 1 −→ 0.(3.8)

Assume that

0 → Y 0 → W 0

0 → W 0

1 → · · · → W 0

n ,(3.9)

0 → Y 1 → W 1

0 → W 1

1 → · · · → W 1

n−1(3.10)

are coproper W-coresolutions of Y 0 and Y 1 respectively.

(1) If the exact sequence (3.8) is HomR(−,W)-exact, then we get the follow-

ing coproper W-coresolution of Y

0 → Y → W 0

0 → W 1

0 ⊕W 0

1 → · · · → W 1

n−1 ⊕W 0

n .(3.11)

(2) If both the exact sequences (3.9), (3.10) and (3.8) are HomR(W
H
C ,−)-

exact, then so is the exact sequence (3.11).
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Corollary 3.4 ([9, Corollary 3.9]). Given an exact sequence of left R-modules

0 −→ Y −→ Y 0 −→ Y 1 −→ · · · −→ Y n.(3.12)

Assume that

0 → Y j → W
j
0
→ W

j
1
→ · · · → W

j
n−j(3.13(j))

is a coproper W-coresolution of Y j for 0 ≤ j ≤ n. If the exact sequence (3.12)
is HomR(−,W)-exact, then

0 → Y → W 0

0 → W 0

1 ⊕W 1

0 → · · · →

n⊕

i=0

W i
n−i(3.14)

is a coproper W-coresolution of Y . Furthermore, if the exact sequence (3.12)
and all (3.13(j)) are HomR(W

H
C ,−)-exact, then so is the exact sequence (3.14).

The following result provides a method to construct a proper WH
C -resolution

of the last term in a short exact sequence from those of the first two terms.

Theorem 3.5 ([9, Theorem 3.6]). Given a short exact sequence of left R-

modules

0 −→ X1 −→ X0 −→ X −→ 0.(3.15)

Assume that

HomR(C,W
n
0 ) → · · · → HomR(C,W

1

0 ) → HomR(C,W
0

0 ) → X0 → 0,(3.16)

HomR(C,W
n−1

1
) → · · · → HomR(C,W

1

1 ) → HomR(C,W
0

1 ) → X1 → 0(3.17)

are proper WH
C -resolutions of X0 and X1 respectively.

(1) If the exact sequence (3.15) is HomR(W
H
C ,−)-exact, then we get the

following proper WH
C -resolution of X

HomR(C,W
n
0 ⊕Wn−1

1
) → · · · → HomR(C,W

1

0 ⊕W 0

1 )

→ HomR(C,W
0

0 ) → X → 0.
(3.18)

(2) If both the exact sequences (3.16), (3.17) and (3.15) are HomR(−,W)-
exact, then so is the exact sequence (3.18).

Corollary 3.6 ([9, Corollary 3.7]). Given an exact sequence of left R-modules

Xn −→ · · · −→ X1 −→ X0 −→ X −→ 0.(3.19)

Assume that

HomR(C,W
n−j
j ) → · · · → HomR(C,W

1

j ) → HomR(C,W
0

j ) → Xj → 0(3.20(j))

is a proper WH
C -resolution of Xj for 0 ≤ j ≤ n. If the exact sequence (3.19) is

HomR(W
H
C ,−)-exact, then

HomR(C,

n⊕

i=0

Wn−i
i ) → · · · → HomR(C,W

1

0 ⊕W 0

1 )→ HomR(C,W
0

0 )→ X → 0

(3.21)
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is a proper WH
C -resolution of X. Furthermore, if the exact sequence (3.19) and

all (3.20(j)) are HomR(−,W)-exact, then so is the exact sequence (3.21).

The next two results which are dual to Theorem 3.5 and Corollary 3.6 re-
spectively provide a method to construct a coproper WT

C -coresolution of the
first term in a short exact sequence from those of the last two terms.

Theorem 3.7 ([9, Theorem 3.8]). Given a short exact sequence of left R-

modules

0 −→ Y −→ Y 0 −→ Y 1 −→ 0.(3.22)

Assume that

0 → Y 0 → C ⊗R W 0

0 → C ⊗R W 0

1 → · · · → C ⊗R W 0

n ,(3.23)

0 → Y 1 → C ⊗R W 1

0 → C ⊗R W 1

1 → · · · → C ⊗R W 1

n−1(3.24)

are coproper WT
C -coresolutions of Y 0 and Y 1 respectively.

(1) If the exact sequence (3.22) is HomR(−,WT
C )-exact, then we get the

following coproper WT
C -coresolution of Y

0 → Y → C ⊗R W 0

0 → C ⊗R (W 1

0 ⊕W 0

1 ) → · · · → C ⊗R (W 1

n−1 ⊕W 0

n).

(3.25)

(2) If both the exact sequences (3.23), (3.24) and (3.22) are HomR(W ,−)-
exact, then so is the exact sequence (3.25).

Corollary 3.8 ([9, Corollary 3.9]). Given an exact sequence of left R-modules

0 −→ Y −→ Y 0 −→ Y 1 −→ · · · −→ Y n.(3.26)

Assume that

0 → Y j → C ⊗R W
j
0
→ C ⊗R W

j
1
→ · · · → C ⊗R W

j
n−j(3.27(j))

is a coproper WT
C -coresolution of Y j for 0 ≤ j ≤ n. If the exact sequence (3.26)

is HomR(−,WT
C )-exact, then

0 → Y → C ⊗R W 0

0 → C ⊗R (W 0

1 ⊕W 1

0 ) → · · · → C ⊗R (

n⊕

i=0

W i
n−i)(3.28)

is a coproper WT
C -coresolution of Y . Furthermore, if the exact sequence (3.26)

and all (3.27(j)) are HomR(W ,−)-exact, then so is the exact sequence (3.28).

4. Stability of Gorenstein categories with respect to

a semidualizing bimodule

In this section, we give some applications of the results in the above section.
We introduce and show the stability of the Gorenstein categories GC(WWT

C)
and GC(W

H
C W) with respect to a semidualizing bimodule C, and study the 2-

out-of-3 property of these categories of a short exact sequence in R-Mod. Also
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we prove how they are related to the Gorenstein categories G((R⋉C)⊗R W)C
and G(HomR(R ⋉ C,W))C over R⋉ C.

We begin this section with the following definition.

Definition 4.1. A complete WWT
C -resolution is a both HomR(W ,−)-exact

and HomR(−,WT
C )-exact exact sequence of left R-modules

X : · · · −→ W1 −→ W0 −→ C ⊗R W 0 −→ C ⊗R W 1 −→ · · ·

with all Wi and W i in W , in which case X is a complete WWT
C -resolution of

Im(W0 → C ⊗R W 0). The Gorenstein subcategory GC(WWT
C) of R-Mod is

defined as

GC(WWT
C) = {G ∈ R-Mod | G admits a complete WWT

C -resolution}.

A complete WH
C W-resolution is a both HomR(W

H
C ,−)-exact and HomR(−,

W)-exact exact sequence of left R-modules

Y : · · · −→ HomR(C,W1) −→ HomR(C,W0) −→ W 0 −→ W 1 −→ · · ·

with all Wi and W i in W , in which case Y is a complete WH
C W-resolution of

Im(HomR(C,W0) → W 0). The Gorenstein subcategory GC(W
H
C W) of R-Mod

is defined as

GC(W
H
C W) = {G ∈ R-Mod | G admits a complete WH

C W-resolution}.

Remark 4.2. If W is the class of projective (resp. injective) left R-modules,

then Gorenstein category GC(WWT
C) (resp. GC(W

H
C W)) coincides with the

class of GC projective (resp. GC injective) left R-modules [11].

Definition 4.3. Let X be a class of left (R⋉C)-modules and M a left (R⋉C)-
module. A complete X -resolution of M over R⋉ C is a both HomR⋉C(X ,−)-
exact and HomR⋉C(−,X )-exact exact sequence

· · · −→ X1 −→ X0 −→ X0 −→ X1 −→ · · ·

of left (R ⋉ C)-modules in X such that M = Im(X0 → X0). The Gorenstein
subcategory G(X )C of (R ⋉ C)-Mod is defined as

G(X )C = {G ∈ (R ⋉ C)-Mod |G admits a complete X -resolution over R⋉ C}.

As an application of the results in the above section, we get the following
result.

Theorem 4.4. Let M ∈ R-Mod. If W is closed under countable direct sums,

then

(1) M ∈ GC(WWT
C) if and only if there exists a both HomR(W ,−)-exact

and HomR(−,WT
C )-exact exact sequence

· · · −→ G1 −→ G0 −→ G0 −→ G1 −→ · · ·

of left R-modules in GC(WWT
C) such that M = Im(G0 → G0).

(2) M ∈ GC(W
H
C W) if and only if there exists a both HomR(W

H
C ,−)-exact

and HomR(−,W)-exact exact sequence

· · · −→ G1 −→ G0 −→ G0 −→ G1 −→ · · ·

of left R-modules in GC(W
H
C W) such that M = Im(G0 → G0).
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Proof. We just prove the first statement since the second is proved dually.
(1) The “only if” part is clear.
“If” part. By assumption, there is both HomR(W ,−)-exact and HomR(−,

WT
C )-exact exact sequences · · · → G1 → G0 → M → 0 and 0 → M → G0 →

G1 → · · · . Then for any j ≥ 0, there exist both HomR(W ,−)-exact and
HomR(−,WT

C )-exact exact sequences:

· · · −→ W i
j −→ · · · −→ W 1

j −→ W 0
j −→ Gj −→ 0,

0 −→ Gj −→ C ⊗R V
j
0
−→ C ⊗R V

j
1
−→ · · · −→ C ⊗R V

j
i −→ · · ·

with all W i
j and V

j
i in W . By Corollaries 3.2 and 3.8, we get exact sequences:

· · · −→
⊕n

i=0
Wn−i

i −→ · · · −→ W 1
0 ⊕W 0

1 −→ W 0
0 → M −→ 0,

0 −→ M −→ C ⊗R V 0
0 −→ C ⊗R (V 0

1 ⊕ V 1
0 ) −→ · · · −→

C ⊗R (
⊕n

i=0
V i
n−i) −→ · · ·

which are both HomR(W ,−)-exact and HomR(−,WT
C )-exact. So

· · · −→
⊕n

i=0
Wn−i

i −→ · · · −→ W 1
0 ⊕W 0

1 −→ W 0
0 −→ C ⊗R V 0

0 −→
C ⊗R (V 0

1 ⊕ V 1
0 ) −→ · · · −→ C ⊗R (

⊕n

i=0
V i
n−i) −→ · · ·

is a complete WWT
C -resolution of M , and hence M ∈ GC(WWT

C). �

Theorem 4.5. (1) If W is closed under countable direct sums, then GC(WWT
C)

and GC(W
H
C W) are closed under direct summands.

Given a short exact sequence of left R-modules

0 −→ X −→ Y −→ Z −→ 0.(4.1)

(2) Assume the sequence (4.1) is both HomR(W ,−)-exact and HomR(−,

WT
C )-exact. If any two of X, Y and Z are in GC(WWT

C), then the third term

is also in GC(WWT
C).

(3) Assume the sequence (4.1) is both HomR(W
H
C ,−)-exact and HomR(−,

W)-exact. If any two of X, Y and Z are in GC(W
H
C W), then the third term is

also in GC(W
H
C W).

Proof. (1) We just prove the first statement since the second is proved dually.

Let X1 ⊕ X2 = X ∈ GC(WWT
C) and · · · → W1 → W0 → C ⊗R W 0 →

C ⊗R W 1 → · · · be a complete WWT
C-resolution of X . Consider the following

pullback diagram:
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0

��

0

��

K1

��

K1

��

0 // D

��

// W0

��

// X1
// 0

0 // X2

��

// X

��

// X1
// 0

0 0

Applying to the above diagram the functors HomR(W,−),HomR(−, C ⊗R W )
for any W ∈ W , a simple diagram chasing argument shows that the middle
row is both HomR(W ,−)-exact and HomR(−,WT

C )-exact. Similarly, we have
an exact sequence 0 → D′ → W0 → X2 → 0 which is both HomR(W ,−)-
exact and HomR(−,WT

C )-exact. Consider the exact sequence 0 → Xi → X →
Xj → 0 for i, j = 1, 2. By Theorem 3.1, we get both HomR(W ,−)-exact
and HomR(−,WT

C )-exact exact sequences W0 ⊕ W1 → W0 → X1 → 0 and
W0⊕W1 → W0 → X2 → 0. Again by Theorem 3.1, we get both HomR(W ,−)-
exact and HomR(−,WT

C )-exact exact sequences W0 ⊕W1⊕W2 → W0 ⊕W1 →
W0 → X1 → 0 and W0 ⊕ W1 ⊕ W2 → W0 ⊕ W1 → W0 → X2 → 0. Con-
tinuing this process, we finally get the following both HomR(W ,−)-exact and
HomR(−,WT

C )-exact exact sequences

· · · −→ W0 ⊕W1 ⊕W2 −→ W0 ⊕W1 −→ W0 −→ X1 −→ 0,

· · · −→ W0 ⊕W1 ⊕W2 −→ W0 ⊕W1 −→ W0 −→ X2 −→ 0.

Dually, by Theorem 3.7, we get the following both HomR(W ,−)-exact and
HomR(−,WT

C )-exact exact sequences

0 −→ X1 −→ C⊗RW
0 −→ C⊗R(W

0⊕W 1) −→ C⊗R(W
0⊕W 1⊕W 2) −→ · · · ,

0 −→ X2 −→ C⊗RW
0 −→ C⊗R(W

0⊕W 1) −→ C⊗R(W
0⊕W 1⊕W 2) −→ · · · .

Consequently, X1 and X2 are in GC(WWT
C).

We just prove the statement (2) since the statement (3) is proved dually.

(2) First assume that X,Z ∈ GC(WWT
C). There exist complete WWT

C -
resolutions of X and Z respectively,

· · · −→ W1 −→ W0 −→ C ⊗R W 0 −→ C ⊗R W 1 −→ · · · ,
· · · −→ V1 −→ V0 −→ C ⊗R V 0 −→ C ⊗R V 1 −→ · · · .

Consider the both HomR(W ,−)-exact and HomR(−,WT
C )-exact exact sequen-

ces 0 → X1 → W0 → X → 0 and 0 → Z1 → V0 → Z → 0. By assumption and
[9, 3.1(1)], we get a commutative diagram with exact columns and rows:
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0

��

0

��

0

��

0 // X1

��

// Y1

��

// Z1

��

// 0

0 // W0

��

// W0 ⊕ V0

��

// V0

��

// 0

0 // X

��

// Y

��

// Z

��

// 0

0 0 0

By assumption, both the first and third columns and the second and third
rows in the above diagram are both HomR(W ,−)-exact and HomR(−,WT

C )-
exact, we have the middle column and the first row in this diagram are also both
HomR(W ,−)-exact and HomR(−,WT

C )-exact. Consider the both HomR(W ,−)-
exact and HomR(−,WT

C )-exact exact sequences 0 → X → C⊗RW 0 → X1 → 0
and 0 → Z → C ⊗R V 0 → Z1 → 0. By assumption and [9, 3.1(2)], we get the
following commutative diagram with exact columns and rows:

0

��

0

��

0

��

0 // X

��

// Y

��

// Z

��

// 0

0 // C ⊗R W 0

��

// C ⊗R (W 0 ⊕ V 0)

��

// C ⊗R V 0

��

// 0

0 // X1

��

// Y 1

��

// Z1

��

// 0

0 0 0

By assumption, both the first and third columns and the first and second rows
in the above diagram are both HomR(W ,−)-exact and HomR(−,WT

C )-exact,
so the middle column and the third row in this diagram are both HomR(W ,−)-
exact and HomR(−,WT

C )-exact. Continuing this process, we get that

· · · −→ W1⊕V1 −→ W0⊕V0 −→ C⊗R (W 0⊕V 0) −→ C⊗R (W 1⊕V 1) −→ · · ·

is a complete WWT
C -resolution of Y and Y ∈ GC(WWT

C).

Next assume that Y, Z ∈ GC(WWT
C). Then Theorem 3.7 implies that X has

a coproper WT
C -coresolution which is HomR(W ,−)-exact. Consider the both

HomR(W ,−)-exact and HomR(−,WT
C )-exact short exact sequence 0 → Y1 →

W0 → Y → 0 with W0 ∈ W . We have the following pullback diagram:
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0

��

0

��

Y1

��

Y1

��

0 // Z ′

��

// W0

��

// Z // 0

0 // X

��

// Y

��

// Z // 0

0 0

It is easy to verify that the middle row and the first column in the above
diagram are both HomR(W ,−)-exact and HomR(−,WT

C )-exact. Consider the
both HomR(W ,−)-exact and HomR(−,WT

C )-exact short exact sequence 0 →
Z1 → V0 → Z → 0 with V0 ∈ W . We have the following commutative diagram:

0 // Z1

��

// V0

��

// Z // 0

0 // Z ′ // W0
// Z // 0

Then we have a both HomR(W ,−)-exact and HomR(−,WT
C )-exact exact se-

quence 0 → Z1 → Z ′⊕V0 → W0 → 0, and so Z ′⊕V0 has a proper W-resolution
that is HomR(−,WT

C )-exact by the preceding proof. Consequently Z ′ has a
proper W-resolution that is HomR(−,WT

C )-exact. Now by Theorem 3.1, we
get that X has a proper W-resolution which is HomR(−,WT

C )-exact. It follows

that X ∈ GC(WWT
C).

Finally assume that X,Y ∈ GC(WWT
C). Then Theorem 3.1 implies that Z

has a proper W-resolution which is HomR(−,WT
C )-exact. Consider the both

HomR(−,WT
C )-exact and HomR(W ,−)-exact short exact sequence 0 → Y →

C ⊗R V 0 → Y 1 → 0 with V 0 ∈ W . We have the following pushout diagram:

0

��

0

��

0 // X // Y

��

// Z

��

// 0

0 // X // C ⊗R V 0

��

// X ′

��

// 0

Y 1

��

Y 1

��

0 0
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It is easy to verify that the middle row and the third column in the above
diagram are both HomR(W ,−)-exact and HomR(−,WT

C )-exact. Consider the
both HomR(W ,−)-exact and HomR(−,WT

C )-exact short exact sequence 0 →
X → C ⊗R W 0 → X1 → 0 with W 0 ∈ W . We have a commutative diagram:

0 // X // C ⊗R W 0

��

// X ′

��

// 0

0 // X // C ⊗R V 0 // X1 // 0

Then we have a both HomR(W ,−)-exact and HomR(−,WT
C )-exact exact se-

quence 0 → C⊗RW 0 → X ′⊕(C⊗RV 0) → X1 → 0, and so X ′⊕(C⊗RV 0) has
a coproper WT

C -coresolution that is HomR(W ,−)-exact by the preceding proof.
Consequently X ′ has a coproper WT

C -coresolution that is HomR(W ,−)-exact.
Now by Theorem 3.7, we get that Z has a coproper WT

C -coresolution which is

HomR(W ,−)-exact. It follows that Z ∈ GC(WWT
C). �

Let X and Y be two subcategories of R-Mod. Write X ⊥ Y if Ext≥1

R (X,Y ) =
0 for each X ∈ X and Y ∈ Y.

Lemma 4.6. (1) Let M ∈ GC(WWT
C). If W ⊥ WT

C , then Ext≥1

R (W,M) = 0 =

Ext≥1

R (M,C ⊗R W ) for any W ∈ W.

(2) Let N ∈ GC(W
H
C W). If WH

C ⊥ W, then Ext≥1

R (HomR(C,W ), N) = 0 =

Ext≥1

R (N,W ) for any W ∈ W.

Proof. It is a standard homological algebra fare. �

Corollary 4.7. Given a short exact sequence of left R-modules

0 −→ X −→ Y −→ Z −→ 0.(4.2)

(1) Assume that W ⊥ WT
C . If the exact sequence (4.2) is HomR(−,WT

C )-

exact and X ∈ GC(WWT
C), then Y ∈ GC(WWT

C) if and only if Z ∈ GC(WWT
C).

(2) Assume that W ⊥ WT
C . If the exact sequence (4.2) is HomR(W ,−)-exact

and Z ∈ GC(WWT
C), then X ∈ GC(WWT

C) if and only if Y ∈ GC(WWT
C).

(3) Assume that WH
C ⊥ W. If the exact sequence (4.2) is HomR(W

H
C ,−)-

exact and Z ∈ GC(W
H
C W), then X ∈ GC(W

H
C W) if and only if Y ∈ GC(W

H
C W).

(4) Assume that WH
C ⊥ W. If the exact sequence (4.2) is HomR(−,W)-exact

and X ∈ GC(W
H
C W), then Y ∈ GC(W

H
C W) if and only if Z ∈ GC(W

H
C W).

Lemma 4.8. Let W ∈ W.

(1) If W ⊆ AC(R), then we have a natural equivalence in D(R ⋉ C):

RHomR⋉C(−, (R⋉ C)⊗R W ) ≃ RHomR(−, C ⊗R W ).

(2) If W ⊆ BC(R), then we have a natural equivalence in D(R ⋉ C):

RHomR⋉C(HomR(R⋉ C,W ),−) ≃ RHomR(HomR(C,W ),−).
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Proof. We just prove (1) since (2) is proved dually.
Let P� → W be a projective resolution of W over R. Then there exists an

isomorphism C ⊗R P�
∼= C ⊗R W in D(R ⋉ C) by assumption. Consider the

exact sequence 0 → C → R ⋉ C → R → 0. If viewed as a sequence of left
R-modules, then it is split. So 0 → C ⊗R W → (R ⋉ C) ⊗R W → W → 0 is
exact, which gives that (R⋉ C)⊗R P�

∼= (R⋉ C)⊗R W in D(R⋉ C). This is
a computation,

RHomR(−, C ⊗R W )
a
≃ RHomR(−,RHomR⋉C(R,R⋉ C)⊗L

R W )

b
≃ RHomR(−,RHomR⋉C(R, (R ⋉ C)⊗L

R W ))
c
≃ RHomR⋉C(−, (R⋉ C)⊗L

R W )

≃ RHomR⋉C(−, (R⋉ C)⊗R W ).

where (a) is by [7, 1.3(4)], (b) is by [2, A.4.23] and (c) is by adjunction. �

Lemma 4.9. (1) Let M be a left R-module which is in G((R ⋉ C) ⊗R W)C .
If W ⊆ AC(R)∩ G((R⋉C)⊗R W)C , then there exist both HomR(W ,−)-exact
and HomR(−,WT

C )-exact short exact sequences of left R-modules

0 −→ M −→ C ⊗R W −→ M ′ −→ 0,(a)

0 −→ M ′′ −→ W ′ −→ M −→ 0,(b)

where W,W ′ ∈ W and M ′,M ′′ ∈ G((R ⋉ C)⊗R W)C .
(2) Let N be a left R-module which is in G(HomR(R ⋉ C,W))C . If W ⊆

BC(R)∩G(HomR(R⋉C,W))C , then there exist both HomR(W
H
C ,−)-exact and

HomR(−,W)-exact short exact sequences of left R-modules

0 −→ N ′ −→ HomR(C, V ) −→ N −→ 0,(a’)

0 −→ N −→ V ′ −→ N ′′ −→ 0,(b’)

where V, V ′ ∈ W and N ′, N ′′ ∈ G(HomR(R ⋉ C,W))C .

Proof. We just prove (1) since (2) is proved dually.
(a) By assumption, there is a both HomR⋉C((R ⋉ C) ⊗R W ,−)-exact and

HomR⋉C(−, (R⋉C)⊗R W)-exact exact sequence 0 → M → (R⋉C)⊗R W →
L → 0, where W ∈ W and L ∈ G((R ⋉ C) ⊗R W)C . Applying the functor
− ⊗R W to the exact sequence 0 → C → R ⋉ C → R → 0, we get an exact
sequence of left (R ⋉ C)-modules 0 → C ⊗R W → (R ⋉ C) ⊗R W → W → 0.
If viewed as a sequence of left R-modules, then it is split. So we have the
following commutative diagram:
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0

��

0

��

0 // M // C ⊗R W

��

// M ′

��

// 0

0 // M // (R ⋉ C)⊗R W

��

// L

��

// 0

W

��

W

��

0 0

Note that HomR⋉C((R⋉C)⊗R W ,−) ∼= HomR(W ,−) and HomR⋉C(−, (R⋉

C) ⊗R W) ∼= HomR(−,WT
C ) by Lemma 4.8. Since the middle column in the

above diagram is both HomR(W ,−)-exact and HomR(−,WT
C )-exact, it is both

HomR⋉C((R⋉C)⊗RW ,−)-exact and HomR⋉C(−, (R⋉C)⊗RW)-exact, and so
the first row and the third column in the above diagram are both HomR⋉C((R⋉

C)⊗RW ,−)-exact and HomR⋉C(−, (R⋉C)⊗RW)-exact. Hence the first row in
this diagram is both HomR(W ,−)-exact and HomR(−,WT

C )-exact by Lemma
4.8. Note that W,L ∈ G((R⋉C)⊗R W)C . Then M ′ ∈ G((R⋉C)⊗R W)C by
[9, 4.7]. Thus the first row in the above diagram is the desired exact sequence.

(b) By assumption, there is a both HomR⋉C((R ⋉ C) ⊗R W ,−)-exact and
HomR⋉C(−, (R⋉C)⊗RW)-exact exact sequence 0 → L′ → (R⋉C)⊗RW ′ →
M → 0, where W ′ ∈ W and L′ ∈ G((R⋉C)⊗RW)C . So we have the following
commutative diagram:

0

��

0

��

C ⊗R W ′

��

C ⊗R W ′

��

0 // L′

��

// (R⋉ C)⊗R W ′

��

// M // 0

0 // M ′′

��

// W ′

��

// M // 0

0 0

Since the middle column in the above diagram is both HomR(W ,−)-exact
and HomR(−,WT

C )-exact, it is both HomR⋉C((R ⋉ C) ⊗R W ,−)-exact and
HomR⋉C(−, (R ⋉ C) ⊗R W)-exact by Lemma 4.8, and so the third row and
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the first column in the above diagram are both HomR⋉C((R ⋉ C) ⊗R W ,−)-
exact and HomR⋉C(−, (R⋉C)⊗RW)-exact. Hence the third row and the first
column in this diagram are both HomR(W ,−)-exact and HomR(−,WT

C )-exact
by Lemma 4.8. Note that (C⊗RW

′)⊕M ′′ ∼= L′. ThenM ′′ ∈ G((R⋉C)⊗RW)C
by [9, 4.6]. Thus the third row in the above diagram is the desired short exact
sequence. �

Lemma 4.10. (1) Let M be a left R-module which is in GC(WWT
C). If W ⊆

AC(R)∩G((R⋉C)⊗RW)C , then there is both HomR⋉C((R⋉C)⊗RW ,−)-exact
and HomR⋉C(−, (R⋉C)⊗R W)-exact exact sequences of left (R⋉C)-modules

0 −→ M −→ (R⋉ C)⊗R W −→ M ′ −→ 0,(a)

0 −→ M ′′ −→ (R⋉ C)⊗R W ′ −→ M −→ 0,(b)

where W,W ′ ∈ W and M ′,M ′′ ∈ GC(WWT
C).

(2) Let N be a left R-module which is in GC(W
H
C W). If W ⊆ BC(R) ∩

G(HomR(R ⋉ C,W))C , then there is both HomR⋉C((R ⋉ C) ⊗R W ,−)-exact
and HomR⋉C(−, (R⋉C)⊗R W)-exact exact sequences of left (R⋉C)-modules

0 −→ N ′ −→ HomR(R⋉ C, V ) −→ N −→ 0,(a’)

0 −→ N −→ HomR(R ⋉ C, V ′) −→ N ′′ −→ 0,(b’)

where V, V ′ ∈ W and N ′, N ′′ ∈ GC(W
H
C W).

Proof. Again we will just prove (1) since (2) is proved dually.

By Lemma 4.9, we get (R⋉C)⊗R W ⊆ GC(WWT
C). Thus W ⊆ GC(WWT

C)

and WT
C ⊆ GC(WWT

C).
(a) By assumption, there is a both HomR(W ,−)-exact and HomR(−,WT

C )-
exact exact sequence 0 → M → C ⊗R W → L → 0 with W ∈ W . Since
WT

C ⊆ GC(WWT
C), L ∈ GC(WWT

C) by Theorem 4.5. Applying the functor
−⊗RW to the split exact sequence 0 → C → R⋉C → R → 0, we get an exact
sequence of left (R ⋉ C)-modules 0 → C ⊗R W → (R ⋉ C) ⊗R W → W → 0.
Consider the following pushout diagram:

0

��

0

��

0 // M // C ⊗R W

��

// L

��

// 0

0 // M // (R ⋉ C)⊗R W

��

// M ′

��

// 0

W

��

W

��

0 0
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We will prove that the middle row here has the properties claimed in the lemma.
It is easy to verify that the middle row and the third column in the above
diagram are HomR(W ,−)-exact. Note that HomR⋉C((R ⋉ C) ⊗R W ,−) ∼=
HomR(W ,−). Then the middle row is also HomR⋉C((R⋉ C)⊗R W ,−)-exact

and M ′ ∼= L ⊕ W ∈ GC(WWT
C). Finally by construction, the middle row in

this diagram is HomR(−,WT
C )-exact. By Lemma 4.8, we see that the middle

row is also HomR⋉C(−, (R⋉ C)⊗R W)-exact.
(b) By assumption, there is a both HomR(W ,−)-exact and HomR(−,WT

C )-
exact exact sequence 0 → L′ → W ′ → M → 0 with W ′ ∈ W . Since W ⊆
GC(WWT

C), L
′ ∈ GC(WWT

C) by Theorem 4.5. Applying the functor −⊗R W ′

to the split exact sequence 0 → C → R⋉C → R → 0, we get an exact sequence
of left (R⋉C)-modules 0 → C ⊗R W ′ → (R⋉C)⊗R W ′ → W ′ → 0. Consider
the following pullback diagram:

0

��

0

��

C ⊗R W ′

��

C ⊗R W ′

��

0 // M ′′

��

// (R⋉ C)⊗R W ′

��

// M // 0

0 // L′

��

// W ′

��

// M // 0

0 0

We will prove that the middle row here has the properties claimed in the
lemma. It is easy to verify that the first column and the middle row in the
above diagram are both HomR(W ,−)-exact and HomR(−,WT

C )-exact. Note
that HomR⋉C((R ⋉ C) ⊗R W ,−) ∼= HomR(W ,−). Then the middle row is
also HomR⋉C((R⋉C)⊗R W ,−)-exact. By Lemma 4.8, the middle row is also

HomR⋉C(−, (R⋉C)⊗RW)-exact and M ′′ ∼= L′⊕(C⊗RW ′) ∈ GC(WWT
C). �

By the above arguments, we get the following assertions.

Theorem 4.11. (1) Let M ∈ R-Mod. If W ⊆ AC(R) ∩ G((R ⋉ C) ⊗R W)C ,

then M ∈ GC(WWT
C) if and only if M ∈ G((R ⋉ C)⊗R W)C .

(2) Let N ∈ R-Mod. If W ⊆ BC(R) ∩ G(HomR(R ⋉ C,W))C , then N ∈
GC(W

H
C W) if and only if N ∈ G(HomR(R ⋉ C,W))C .

Corollary 4.12 ([7, 2.13]). For any left R-module M , we have

(1) M is GC projective if and only if M is Gorenstein projective over R⋉C.

(2) M is GC injective if and only if M is Gorenstein injective over R⋉ C.
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Proposition 4.13. (1) Let W ⊆ AC(R) ∩ G((R ⋉ C) ⊗R W)C . If X is a

complete WWT
C-resolution, then all the images, the kernels and the cokernels

of X are in GC(WWT
C).

(2) Let W ⊆ BC(R) ∩ G(HomR(R ⋉ C,W))C . If Y is a complete WH
C W-

resolution. Then all the images, the kernels and the cokernels of Y are in

GC(W
H
C W).

Proof. It follows from Theorem 4.5 and Lemma 4.9. �
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