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LONG PATHS IN THE DISTANCE GRAPH OVER LARGE

SUBSETS OF VECTOR SPACES OVER FINITE FIELDS

Michael Bennett, Jeremy Chapman, David Covert, Derrick Hart,

Alex Iosevich, and Jonathan Pakianathan

Abstract. Let E ⊂ F
d
q , the d-dimensional vector space over the finite

field with q elements. Construct a graph, called the distance graph of E,
by letting the vertices be the elements of E and connect a pair of vertices
corresponding to vectors x, y ∈ E by an edge if ||x− y|| := (x1 − y1)

2 +

· · ·+ (xd − yd)
2 = 1. We shall prove that the non-overlapping chains of

length k, with k in an appropriate range, are uniformly distributed in
the sense that the number of these chains equals the statistically correct

number, 1 · |E|
k+1q−k plus a much smaller remainder.

1. Introduction

The classical Euclidean distance graph can be described as follows. Let the
vertices of the graph be the points of the Euclidean plane. Connect two vertices
by an edge if the Euclidean distance between the corresponding vectors is equal
to 1. A very interesting open question, called the Hadwiger-Nelson problem,
is to find the exact value of the chromatic number of this graph, the minimal
number of colors required so that no two points of the same color are a distance
1 apart. It is known that the answer is at least four and at most seven.

In this paper, we continue the investigation of the corresponding distance
graph in F

d
q , the d-dimensional vector space over the finite field with q elements.

Once again, the vertices of the graph are the points of Fd
q and two vertices x, y

are connected by an edge if ||x− y|| = 1, where

‖x‖ = x2
1 + x2

2 + · · ·+ x2
d.

The distance graph of Fd
q has been previously considered. For example, in [6]

the authors show that the distance graph of Fd
q is asymptotically Ramanujan

for large q, meaning that the adjacency matrix of the distance graph of Fd
q

(which is a k-regular graph for some k depending on q) satisfies the property
that for every eigenvalue λ with |λ| 6= k, we have |λ| ≤ 2

√
k − 1. For more
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details on this result and for other results on the distance graph of Fd
q , see [1],

[3], [6] and [7].
In this paper we consider a much more complicated case when instead of

taking all points in F
d
q as the vertices of the distance graph, we merely consider

points in a subset of Fd
q of a sufficiently large size. To see that this formulation

is meaningful, recall that the 5th listed author and Misha Rudnev proved in
[4] that if E ⊂ F

d
q , d ≥ 2, and t 6= 0, then

(1.1) |{(x, y) ∈ E × E : ||x− y|| = t}| =
|E|

2

q
+R(t),

where

|R(t)| ≤ 2q
d−1
2 |E|.

Here and throughout, |S| denotes the number of elements in a (finite) set S.

In particular, if t = 1 and |E| ≥ 4q
d+1
2 , then

|{(x, y) ∈ E × E : ||x− y|| = 1}| ≥
|E|

2

2q

or, in other words, the number of edges in the distance graph of E is at least
|E|2

4q .

Using this fact and elementary counting, one can show under this size as-
sumption that the distance graph with vertices in E contains a chain of length

at least C |E|

q
. With a bit more work, we can even show that the number of

chains of length k is comparable to a constant multiple of |E|k+1q−k. We are
going to see below that something much stronger is true, namely that the k-
chains are uniformly distributed in the sense that the number of k-chains equals

the statistically correct number, 1 · |E|
k+1

q−k plus a much smaller remainder.

1.1. Main results

We know that if E is of sufficiently large cardinality, then the distance graph
of E contains many edges, and an interesting question is whether the distance
graph of E ⊂ F

d
q must contain a long path. It turns out that the answer is

affirmative. More precisely, we have the following result.

Theorem 1.1. Let E ⊂ F
d
q, where d ≥ 2 and |E| > 2k

ln 2q
d+1
2 . Suppose that

ti 6= 0, 1 ≤ i ≤ k, and let ~t = (t1, . . . , tk). Define

Ck(~t) = |{(x1, . . . , xk+1) ∈ E × · · · × E : ||xi − xi+1|| = ti, 1 ≤ i ≤ k}|.

Then

Ck(~t) =
|E|

k+1

qk
+Dk(~t),

where

|Dk(~t)| ≤
2k

ln 2
q

d+1
2

|E|
k

qk
.
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In particular, since |E| > 2k
ln 2q

d+1
2 , Ck(~t) > 0.

Definition 1.2. A path of length k in a simple graphG is a sequence of vertices
v1, . . . , vk+1 ∈ G such that each pair vi, vi+1, 1 ≤ i ≤ k is connected by an
edge. We say that a path of length k is non-overlapping if all the vjs in the
definition are distinct.

Corollary 1.3. With the notation above, suppose that |E| ≥ 4k
ln 2q

d+1
2 . Then

the distance graph of E contains a non-overlapping chain of length k of every

type.

Remark 1.4. As we noted in the introduction above, this conclusion can be
obtained by simpler methods, but Theorem 1.1 provides us with very precise
information about the distribution of k-chains.

In addition to studying paths in a distance graph, we study the following
closely related configuration. Given a set E ⊂ F

d
q , fix a point x ∈ E, and

count all of the vectors that are simultaneously some prescribed distance from
x (we call such configurations k-stars). We show that if E is of sufficiently large
cardinality, then we achieve the statistically correct number of k-stars. More
precisely, we prove the following.

Theorem 1.5. Let E ⊂ F
d
q , and suppose ti 6= 0, 1 ≤ i ≤ k. For ~t = (t1, . . . , tk),

define

νk(~t)

=
∣∣{(x, x1, . . . , xk) ∈ Ek+1 : ‖x− xi‖ = ti, xi = xj ⇐⇒ i=j, 1 ≤ i, j ≤ k

}∣∣ .

If |E| > 12q
d+1
2 , then νk(~t) > 0 for any k < |E|

12q
d+1
2

.

If |E| > 12q
d+3
2 , then νk(~t) > 0 for any k < |E|

12q .

1.2. Fourier analysis in F
d
q

Let f : Fd
q → C and χ a nontrivial additive character of Fq. Then,

f̂(m) = q−d
∑

x∈Fd
q

χ(−m · x)f(x).

We have the following Plancherel and inversion formulas:
∑

m∈Fd
q

|f̂(m)|2 = q−d
∑

x∈Fd
q

|f(x)|2,

f(x) =
∑

m∈Fd
q

f̂(m)χ(m · x).

The proofs are straightforward. See, for example, [4] and the references
contained therein.
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2. Proof of Theorem 1.1

We shall need the following functional version of the arithmetic analog of
Falconer’s result proved in [2].

Theorem 2.1. Let f, g : Fd
q → R

+. Let St = {x ∈ F
d
q : ||x|| = t}, where

||x|| = x2
1 + · · ·+ x2

d and t 6= 0. Then

∑

x,y∈Fd
q

f(x)g(y)St(x− y) =
1

q
· ||f ||1 · ||g||1 +D(f, g),

where

(2.1) |D(f, g)| ≤ 2q
d−1
2 ||f ||2||g||2.

To prove Theorem 2.1, we write
∑

x,y∈Fd
q

f(x)g(y)St(x− y)

=
1

q

∑

x,y∈Fd
q

f(x)g(x + y)
∑

s∈Fq

χ(s(‖y‖ − t))

=
1

q
· ||f ||1 · ||g||1 + qd−1

∑

m∈Fd
q

f̂(m)ĝ(−m)
∑

s6=0

χ(−st)
∑

y∈Fd
q

χ(s‖y‖ − y ·m)

=
1

q
· ||f ||1 · ||g||1 + qd−1

∑

m∈Fd
q

f̂(m)ĝ(−m)
∑

s6=0

χ

(
−st−

‖m‖

4s

) ∑

y∈Fd
q

χ
(
s
∥∥∥y −

m

2s

∥∥∥
)
.

The rightmost sum is a Gauss sum, which shows that the sum is equal to

(2.2)
1

q
· ||f ||1 · ||g||1 + u1q

3d−2
2

∑

m∈Fd
q

f̂(m)ĝ(−m)
∑

s6=0

(
s

q

)d

χ

(
−st−

‖m‖

4s

)
,

where u1 is a unimodular complex number and
(
·
·

)
is the Legendre symbol (see

[5] for more details regarding the Gauss sum).
We need the following fact about Kloosterman/Salié sums. See, for example,

[5].

Lemma 2.2. If a 6= 0 or b 6= 0, then
∣∣∣∣∣∣

∑

s6=0

(
s

q

)d

χ
(
as+ bs−1

)
∣∣∣∣∣∣
≤ 2

√
q.

Applying the lemma shows that (2.2) is equal to

1

q
· ||f ||1 · ||g||1 + 2u2q

3d−1
2

∑

m∈Fd
q

|f̂(m)ĝ(−m)|
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where |u2| ≤ 1. We use Cauchy-Schwarz to see that the expression equals

1

q
· ||f ||1 · ||g||1 + 2u2q

3d−1
2




∑

m1,m2∈Fd
q

|f̂(m1)|
2|ĝ(−m2)|

2




1/2

.

Applying Plancherel to the sum over m1 and the sum over m2 completes the
proof of Theorem 2.1.

We shall prove Theorem 1.1 in the case t = (1, . . . , 1) for the sake of ease
of exposition, but the reader can easily convince oneself that the argument
extends to the general case. Let Cn = Cn(1, . . . , 1). The basic mechanism of
our proof is encapsulated in the following claim.

Lemma 2.3. With the notation above, we have

C2k+1 = q−1C2
k +R2k+1,

C2k = q−1CkCk−1 +R2k,

where

|R2k+1| ≤ 2q
d−1
2 C2k

and

|R2k| ≤ 2q
d−1
2

√
C2kC2k−2.

To prove the lemma, define

f1(x) = (E ∗ S)(x)E(x),

where S = S1, and where

(f ∗ g)(x) =
∑

y∈Fd
q

f(y)g(x− y).

Further, let

fk+1(x) = (fk ∗ S)(x)E(x).

Unraveling the definition of C2k+1, we see that it equals
∑

x,y

fk(x)fk(y)S(x− y),

which, by Theorem 2.1 is equal to

q−1

(
∑

x

fk(x)

)2

+R2k+1,

where

|R2k+1| ≤ 2q
d−1
2 ||fk||

2
2.

Similarly,

C2k =
∑

x,y

fk(x)fk−1(y)S(x− y)
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= q−1
∑

x

fk(x) ·
∑

y

fk−1(y) +R2k,

where

|R2k| ≤ 2q
d−1
2 ||fk||2||fk−1||2.

By a direct calculation,

||fk||1 = Ck

and

||fk||
2
2 = C2k.

Putting everything together we recover the conclusions of Lemma 2.3.

Lemma 2.4. With the notation above, we have

Cn ≤ |E|

(
|E|+ 2q

d+1
2

q

)n

.

To prove Lemma 2.4, we first put X = |E|+2q
d+1
2

q
. We know that C1 ≤ |E|X

by (1.1). Now we induct on the chain length. Suppose it holds for Ck when
k < n. From the previous lemma,

C2k+1 ≤
C2

k

q
+ 2q

d−1
2 C2k

≤
(|E|Xk)2

q
+ 2q

d−1
2 |E|X2k = |E|X2k+1.

Recall we have shown in the previous lemma that C2k ≤ q−1CkCk−1 +

2q
d−1
2

√
C2kC2k−2. Completing the square, we may then write

(
√
C2k − q

d−1
2

√
C2k−2)

2 ≤ q−1CkCk−1 + qd−1C2k−2.

Taking square roots yields
√
C2k ≤ q

d−1
2

√
C2k−2+

√
q−1CkCk−1 + qd−1C2k−2.

Finally squaring both sides yields:

C2k ≤
CkCk−1

q
+ 2qd−1C2k−2 + 2

√
q2d−2C2

2k−2 + qd−2C2k−2CkCk−1

≤
|E|2X2k−1

q
+ 2qd−1|E|X2k−2 + 2

√
q2d−2|E|2X4k−4 + qd−2|E|3X4k−3

=
|E|2X2k−1

q
+ 2qd−1|E|X2k−2

(
1 +

√

1 +
|E|X

qd

)

=
|E|2X2k−1

q
+ 2qd−1|E|X2k−2



1 +

√
qd+1 + |E|2 + 2|E|q

d+1
2

qd+1





=
|E|2X2k−1

q
+ 2qd−1|E|X2k−2

(
2 +

|E|

q
d+1
2

)
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=
|E|2X2k−1

q
+ 2q

d−1
2 |E|X2k−1 = |E|X2k.

This completes the proof of Lemma 2.4.
We are now ready to complete the proof of Theorem 1.1. By the previous

lemma, we have

Cn ≤ |E|

(
|E|+ 2q

d+1
2

q

)n

=
|E|

qn

n∑

i=0

(
n

i

)
|E|n−i

(
2q

d+1
2

)i

=
|E|n+1

qn
+

2q
d+1
2 |E|

qn

n∑

i=1

(
n

i

)
|E|n−i

(
2q

d+1
2

)i−1

.

By assumption, q
d+1
2 ≤ |E| ln 2

2n , so

Cn ≤
|E|n+1

qn
+

2q
d+1
2 |E|n

qn

n∑

i=1

(
n

i

)(
ln 2

n

)i−1

=
|E|n+1

qn
+

2n

ln 2
q

d+1
2

|E|n

qn

((
1 +

ln 2

n

)n

− 1

)

≤
|E|n+1

qn
+

2n

ln 2
q

d+1
2

|E|n

qn
(eln 2 − 1) =

|E|n+1

qn
+

2n

ln 2
q

d+1
2

|E|n

qn
.

For the lower bound, we use induction. We will first establish the inequality
for the odd indices. Note that (1.1) yields

C1 ≥
|E|2

q
− 2q

d+1
2

|E|

q
≥

|E|2

q
−

2

ln 2
q

d+1
2

|E|

q
.

Next we deal with C3. Lemma 2.3 implies that

(2.3)

∣∣∣∣C2n+1 −
C2

n

q

∣∣∣∣ ≤ 2q
d−1
2 C2n.

Hence,

C3 ≥
1

q
C2

1 − 2q
d−1
2 C2

=
1

q

(
|E|2

q
− 2q

d−1
2 |E|

)2

− 2q
d−1
2 C2

≥
|E|4

q3
−

6

ln 2
q

d+1
2

|E|3

q3
,

whenever

C2 ≤

(
3

ln 2
− 2

)
|E|3

q2
+ 2q

d−3
2 |E|2.
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Lemma 2.4 shows that we already have the inequality

C2 ≤ |E|

(
|E|+ q

d+1
2

q

)2

,

so we need only demonstrate that

|E|

(
|E|+ q

d+1
2

q

)2

≤

(
3

ln 2
− 2

)
|E|3

q2
+ 2q

d−3
2 |E|2,

which holds for

|E| ≥ q
d+1
2 .

Since |E| is assumed to be in the range |E| ≥ 6
ln 2q

d+1
2 , we have established the

lower bound for C3.
For n ≥ 2, suppose that for some k < 2n+ 1, we have

Ck ≥
|E|k+1

qk
−

2k

ln 2
q

d+1
2

|E|k

qk
.

Applying (2.3) yields

∣∣∣∣C2n+1 −
C2

n

q

∣∣∣∣ ≤ 2q
d−1
2 C2n.

This implies

C2n+1 ≥

(
|E|n+1

qn
− 2n

ln 2q
d+1
2

|E|n

qn

)2

q
− 2q

d−1
2

(
|E|2n+1

q2n
+

4n

ln 2
q

d+1
2

|E|2n

q2n

)

=
|E|2n+2

q2n+1
− q

d+1
2

|E|2n+1

q2n+1

(
4n

ln 2
− q

d+1
2

4n2

|E|(ln 2)2
+ 2 +

8n

|E| ln 2
q

d+1
2

)
.

Observe that

8n

|E| ln 2
q

d+1
2 − q

d+1
2

4n2

|E|(ln 2)2
< 0

for n ≥ 2 so that

C2n+1 ≥
|E|2n+2

q2n+1
−

4n+ 2

ln 2
q

d+1
2

|E|2n+1

q2n+1
.

Since we have dealt separately with the case n = 1, it follows that the above
inequality holds for all n ≥ 1. A nearly identical argument gives us the analog
for C2n.
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3. Proof of Corollary 1.3

In analogy with fk, let gk(x) be the number of non-overlapping paths of
length k in E beginning at x. Then the total number of such paths is

Gk =
∑

x

gk(x).

Given a non-overlapping n-path (v0, v1, v2, . . . , vn), we must be able to find
at least −n+

∑
y E(y)S(v0 − y) choices of x so that the path (x, v0, v1, . . . , vn)

is also non-overlapping. There may be some values of i for which S(vi − v0) =
1, which is why we must subtract n. Otherwise we may be including some
overlapping paths in the count.

We then have the following recursive inequality:

Gn+1 ≥
∑

x

gn(x)

(
−n+

∑

y

E(y)S(x− y)

)
= −nGn+

∑

x,y

gn(x)E(y)S(x−y).

By Theorem 2.1, we see that

∑

x,y

gn(x)E(y)S(x − y) ≥
|Gn||E|

q
− 2q

d−1
2 |E|1/2

(
∑

x

(gn(x))
2

)1/2

.

We also know that
∑

x

(gn(x))
2 ≤

∑

x

(fn(x))
2 = C2n.

By Theorem 1.1, we have

C2n ≤
|E|2n+1

q2n
+

4n

ln 2
q

d+1
2

|E|2n

q2n
,

and by assumption, |E| ≥ 4n
ln 2q

d+1
2 . Thus

C2n ≤ 2
|E|2n+1

q2n
.

Moreover

Gn ≤ Cn ≤
|E|n+1

qn
+

2n

ln 2
q

d+1
2

|E|n

qn
.

We will induct on the chain length and assume that

Gk ≥
|E|k+1

qk
−

4k

ln 2
q

d+1
2

|E|k

qk
.

Putting everything together, we get

Gk+1 ≥
Gk|E|

q
− kGk − 2q

d−1
2

√

2
|E|2k+2

q2k

≥
|E|k+2

qk+1
−

4k

ln 2
q

d+1
2

|E|k+1

qk+1
− k

|E|k+1

qk
−

4k2

ln 2
q

d+1
2

|E|k

qk
− 2

√
2q

d+1
2

|E|k+1

qk+1
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=
|E|k+2

qk+1
− q

d+1
2

|E|k+1

qk+1

(
4k

ln 2
+

k

q
d−1
2

+
4k2q

|E| ln 2
+ 2

√
2

)
.

By assumption, |E| ≥ 4k
ln 2q

d+1
2 , so

Gk+1 ≥
|E|k+2

qk+1
− q

d+1
2

|E|k+1

qk+1

(
4k

ln 2
+

2k

q
d−1
2

+ 2
√
2

)
.

Lastly, since |E| ≤ qd, we have k ≤ ln 2
4 q

d−1
2 , giving us

Gk+1 ≥
|E|k+2

qk+1
− q

d+1
2

|E|k+1

qk+1

(
4k

ln 2
+

ln 2

2
+ 2

√
2

)

≥
|E|k+2

qk+1
−

4k + 4

ln 2
q

d+1
2

|E|k+1

qk+1
.

4. Proof of Theorem 1.5

Suppose ~t = (t1, . . . , tk) is k-dimensional with all nonzero indices. Notice

that a k-star with edge-lengths given by ~t can also be described by any permu-
tation of the indices of ~t. Hence we assume without loss of generality that for
some value l ≤ min{k, q − 1} the vector ~t satisfies

t1 = t2 = · · · = ti1 = s1; ti1+1 = · · · = ti2 = s2; . . . ; til−1+1 = · · · = til = sl

for some pairwise distinct nonzero elements s1, . . . , sl, and where il = k. We
define

h(x) = #{y ∈ E : ‖x− y‖ = 1},

where the choice of 1 as the length is arbitrary. We may equivalently write

h(x) =
∑

y

E(y)S(x− y).

We begin by estimating

Hn = #{x ∈ E : h(x) ≥ n}.

That is, Hn is the number of points of E from which an n-star with all edge
lengths 1 can be made. We use Cauchy-Schwarz to get




∑

x,h(x)≥n

E(x)h(x)




2

≤




∑

x,h(x)≥n

E(x)(h(x))2








∑

x,h(x)≥n

E(x)





≤ Hn

∑

x

E(x)(h(x))2 .

Notice that the sum on the right-hand side is
∑

x,y,z

E(x)E(y)E(z)S(x − y)S(x− z).

By Theorem 1.1, this is less than |E|3+6q
d+1
2 |E|2

q2
.
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For the left-hand side, we notice first that
∑

x,h(x)≥n

E(x)h(x) ≥
∑

x

E(x)(h(x) − n) = −n|E|+
∑

x

E(x)h(x).

Using Theorem 1.1 again, we see that the left side is bounded below by
(
|E|2 − 2q

d+1
2 |E|

q
− n|E|

)2

.

Solving for Hn gives

Hn ≥ |E| − 10q
d+1
2 − 2qn.

We now return to our vector ~t. We now know that there are at least Hij−ij−1

points in E with (ij − ij−1)-stars having all edge lengths sj . By pigeonholing,

there must be at least |E| −
∑l

j=1

(
|E| −Hij−ij−1

)
points in E from which

emanate k-stars given by ~t. This quantity is larger than zero simply when

|E| >
l∑

j=1

(
|E| −Hij−ij−1

)
.

Recall that l ≤ min{k, q − 1}, i0 = 0, and il = k. Since

l∑

j=1

(
|E| −Hij−ij−1

)
<

l∑

j=1

(
10q

d+1
2 + 2q(ij − ij−1)

)

= 10lq
d+1
2 + 2q(il − i0) ≤ min{k, q − 1}10q

d+1
2 + 2qk,

it suffices to have |E| > min{k, q − 1}10q
d+1
2 + 2qk. The result follows.
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