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ASYMPTOTIC BEHAVIORS OF SOLUTIONS FOR AN

AEROTAXIS MODEL COUPLED TO FLUID EQUATIONS

Myeongju Chae, Kyungkeun Kang, and Jihoon Lee

Abstract. We consider a coupled system of Keller-Segel type equations
and the incompressible Navier-Stokes equations in spatial dimension two.
We show temporal decay estimates of solutions with small initial data
and obtain their asymptotic profiles as time tends to infinity.

1. Introduction

In this paper, we consider a mathematical model describing the dynamics of
oxygen, swimming bacteria, and viscous incompressible fluids in R

2.

(1.1)






∂tn+ u · ∇n−∆n = −∇ · (χ(c)n∇c),

∂tc+ u · ∇c−∆c = −k(c)n,

∂tu+ u · ∇u−∆u +∇p = −n∇φ, ∇ · u = 0

in QT := (0, T )×R
2,

where c(t, x) : QT → R
+, n(t, x) : QT → R

+, u(t, x) : QT → R
d and p(t, x) :

QT → R denote the oxygen concentration, cell concentration, fluid velocity,
and scalar pressure, respectively. Here R

+ indicates the set of non-negative
real numbers. Such a model was proposed by Tuval et al. [25], formulating the
dynamics of swimming bacteria, Bacillus subtilis (see [25] for more details on
biological phenomena).

The nonnegative functions k(c) and χ(c) denote the oxygen consumption
rate and the aerobic sensitivity, respectively, i.e., k, χ : R+ → R

+ such that
k(c) = k(c(x, t)) and χ(c) = χ(c(x, t)). Initial data are given by (n0(x), c0(x),
u0(x)) with n0(x), c0(x) ≥ 0 and ∇ · u0 = 0. To describe the fluid motions,
Boussinesq approximation is used to denote the effect due to heavy bacte-
ria. The time-independent function φ = φ(x) denotes the potential function
produced by different physical mechanisms, e.g., the gravitational force or cen-
trifugal force.

We can compare the above system (1.1) to the classical Keller-Segel model,

Received September 11, 2014; Revised June 15, 2015.
2010 Mathematics Subject Classification. 35K55, 75D05, 92B05.
Key words and phrases. asymptotic behavior, Keller-Segel, Navier-Stokes equations.

c©2016 Korean Mathematical Society

127



128 M. CHAE, K. KANG, AND J. LEE

suggested by Patlak [22] and Keller-Segel [16, 17], which is given as

(1.2)

{
nt = ∆n−∇ · (nχ∇c),

ct = ∆c− αc+ βn,

where n = n(t, x) is the cell density and c = c(t, x) is the concentration of
chemical attractant substance. Here, χ is the chemotatic sensitivity, and α ≥ 0
and β ≥ 0 are the decay and production rate of the chemical, respectively. The
system (1.2) has been comprehensively studied and we will not try to give list
of results here (see e.g. [12, 15, 19, 21, 26] and the survey papers [13, 14]).

In the absence of effect of fluids, i.e., u = 0 and φ = 0, the system (1.1) is
reduced to a type of Keller-Segel model with the negative term −k(c)n (com-
pare to the classical Keller-Segel equations (1.2) with the positive term βn).
It is due to different biological contexts; the oxygen concentration in (1.1) is
consumed and the chemical substance, meanwhile, is produced by n in (1.2). It
is known for the Keller-Segel equations (1.2) that there exists an initial datum
of n such that blow-up occurs in a finite time if its initial mass is larger than
a critical value, 8π (see e.g. [12] and [23], and also compare to [15] for the
parabolic-elliptic case). It is not, however, clear due to the opposite effect of
−k(c)n whether or not solutions of the system (1.1) exist globally in general,
or some initial data would develop a blow up, even in the case of the absence
of u.

We review some known results regarding the system (1.1). In [18] exis-
tence of solutions was shown locally in time for bounded domains in R

3 and
[7] proved that smooth solutions are globally extended in time if initial data
are sufficiently close to constant steady states and if χ(·) and k(·) satisfy the
following conditions on [0,∞):

(1.3) χ′(·) ≥ 0, k′(·) > 0,

(
k(·)

χ(·)

)′′

< 0.

It was also shown in [7] that weak solutions exist globally in time in R
2, provided

that the initial chemical concentration is small. [27] proved the global existence
of regular solutions without smallness assumptions on initial data for bounded
domains in R

2 with boundary conditions ∂νn = ∂νc = u = 0 under the following
sign conditions on χ(·) and k(·) on [0,∞):

(1.4)

(
k(·)

χ(·)

)′

> 0, (χ(·)k(·))′ ≥ 0,

(
k(·)

χ(·)

)′′

≤ 0.

In [3] the authors established global existence of smooth solutions in R
2 with no

smallness of the initial data and certain conditions, motivated by experimental
results in [5] and [25], on χ(·) and k(·) (compare to (1.4)), that is,

(1.5) χ(c), k(c), χ′(c), k′(c) ≥ 0, and sup |χ(c)−µk(c)| < ǫ for some µ > 0.

Construction of weak solutions in R
3 was also established in [3] in case that

|χ(c)− µk(c)| = 0 in (1.5). The authors also studied the time decay of regular
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solution in [4]. More precisely, it was shown that if L∞-norm of c0 is sufficiently
small, then regular solution exists globally and, furthermore, n and c satisfy
the following time decay:

(1.6) ‖n(t)‖L∞(Rd) + ‖c(t)‖L∞(Rd) ≤ C(1 + t)−
d
4 , d = 2, 3.

For bounded convex domains with smooth boundary, [28] showed that (n, c, u)
converges to ((n)a, 0, 0) in L∞-norm under the assumption (1.4), where (n)a
indicates the mean value of n0. We consult [6], [8] and [24] with reference
therein for the nonlinear diffusion models of a porous medium type.

Our main objective of this paper is to obtain asymptotic profiles of temporal
decaying solutions of (1.1). To be more precise, if certain norms of initial data
are sufficiently small, we prove existence of global regular solutions, which show
certain degree of temporal decay, and in addition, asymptotic profiles of n and
u can be obtained.

Before we state our main result, since the vorticity equation is rather con-
venient than the equation of velocity, we consider from now on

(1.7) ∂tn+ u · ∇n−∆n = −∇ · (χ(c)n∇c),

(1.8) ∂tc+ u · ∇c−∆c = −k(c)n,

(1.9) ∂tω + u · ∇ω −∆ω = −∇⊥(n∇φ),

where u is given as a Biot-Savart law, namely

(1.10) u = K ∗ ω, K(x) = ∇⊥ log |x| = 〈−
x2

|x|
2 ,

x1

|x|
2 〉.

We denote by m and γ the total mass of n and total circulation of ω, respec-
tively, i.e.,

(1.11)

∫

R2

n0(x)dx = m,

∫

R2

ω0(x)dx = γ.

If we consider only the Navier-Stokes equations, i.e., n = 0 and c = 0, in
(1.7)-(1.10), it is known that vorticity field converges asymptotically to the
radial self-similar solution at time infinity. To be more precise, in such case the
following asymptotic formula holds:

(1.12) lim
t→∞

t ‖ω(·, t)− γΓ(·, t)‖L∞(R2) = 0,

where Γ(x, t) is the two dimensional heat kernel, i.e.,

Γ(x, t) = (4πt)−1 exp(− |x|
2
/4t).

The formula (1.12) was first proved in [11] when ‖ω0‖L1 is small. Such small-
ness assumption of ‖ω0‖L1 was replaced by the smallness of γ in [2] and [9]
removed the smallness assumption of γ (see [10] for further references related
to asymptotics of the vorticity equations). Our approach is similar to that
shown in [10] and it is, however, quite difficult to analyze the asymptotics of
solutions for the system (1.7)-(1.10), because of the coupled structure of the
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system. Nevertheless, we obtain asymptotic behaviors of solutions under the
smallness assumptions of initial data. To be more precise, our main result reads
as follows:

Theorem 1. Let the initial data (n0, c0, u0) be given in Hm−1(R2)×Hm(R2)×
Hm(R2) for m ≥ 3 with n0 ≥ 0, c0 ≥ 0 and div u0 = 0. Assume that χ, k, χ′, k′

are all non-negative and χ, k ∈ Cm(R+) and k(0) = 0, ‖∇lφ‖L1∩L∞ < ∞ for

1 ≤ |l| ≤ m. There exists a constant ǫ1 > 0 such that if

(1.13) ‖n0‖L1(R2) + ‖c0‖(L∞∩Ḣ1)(R2) + ‖ω0‖L1(R2) < ǫ1,

then unique classical solutions (n, c, ω) of (1.7)-(1.10) exist globally and (n, c, ω)
satisfy the following asymptotics: for any R <∞ and for all 1 < r <∞

lim
t→∞

t ‖n(·, t)−mΓ(·, t)‖L∞(Bt,R) = 0,

lim
t→∞

t
1
2 ‖∇c(·, t)‖L∞(Bt,R) = 0,

lim
t→∞

t1−
1
r ‖ω(·, t)− γΓ(·, t)‖Lr(Bt,R) = 0,

where Bt,R := {x ∈ R
2 : |x| < Rt

1
2 } and Γ(x, t) is the two dimensional heat

kernel.

Remark 1. We note that Theorem 1 implies the following temporal decay of
(n, c, ω) for large t:

‖n(t)‖L∞(R2) ∼
m

t
+
o(1)

t
, ‖∇c(t)‖L∞(R2) ∼

o(1)

t
1
2

,

‖ω(t)‖Lr(R2) ∼
γ

t1−
1
r

+
o(1)

t1−
1
r

, 1 < r <∞.

Remark 2. The existence of unique classical solution was proved previously
in [4] assuming either ‖n0‖L1(R2) < ǫ1 or ‖c0‖L∞ < ǫ1. Further smallness

assumption of ∇c0 and ω0, i.e., ‖∇c0‖L2(R2) + ‖ω0‖L1(R2) < ǫ enables us to

obtain the time decay and asymptotic behaviors. We do not know whether or
not the assumption (1.13) can be removed, and thus we leave it as an open
question.

This paper is organized as follows. Section 2 is devoted to obtaining decay
rate of solutions in case that certain norm of initial data are sufficiently small.
In Section 3, we present the proof of Theorem 1.

2. Estimates of temporal decay

We first introduce the notation and present preparatory results that are
useful to our analysis. We start with the notation. For 1 ≤ q ≤ ∞, we
mean by W k,q(Ω) the usual Sobolev spaces, namely W k,q(Ω) = {f ∈ Lq(Ω) :
Dαf ∈ Lq(Ω), 0 ≤ |α| ≤ k}. We write the homogeneous Sobolev spaces as

Ẇ k,q(Ω) = {f ∈ Lq(Ω) : Dαf ∈ Lq(Ω), |α| = k}. In case q = 2, we denote
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W k,2(Ω) and Ẇ k,2(Ω) by Hk(Ω) and Ḣk(Ω), respectively. The letter C is
used to represent a generic constant, which may change from line to line, and
C(∗, . . . , ∗) is considered a positive constant depending on ∗, . . . , ∗. Sometimes,
we use A . B, which means the inequality A ≤ CB, where C is a generic
constant. For convenience we mention the elementary inequalities which are
repeatedly used;

(2.1)

∫ t

0

1

(t− s)1−a

1

s1−b
ds ≤

C

t1−(a+b)
(a > 0, b > 0),

(2.2)

∫ t
2

0

1

(t− s)b
1

s1−a
ds ≤

C

tb−a
,

∫ t

t
2

1

(t− s)1−a

1

sb
ds ≤

C

tb−a
(a > 0, b ≥ 0).

We remind a lemma in [10, Section 2.2.5] and the following is its slight modified
version.

Lemma 2. Let f : R2 → R and g : R2 → R
2 be C1 and radial in R

2. Then,

((K ∗ g)∇) f = 0 in R
2,

where K(x) = 〈− x2

|x|2
, x1

|x|2
〉.

Proof. The proof can be similarly proved by the same arguments as the lemma
in [10, Section 2.2.5], and therefore, we skip its details. �

In this section, we are concerned with optimal temporal decays of solutions
(n, c, ω) of (1.7)-(1.10), and our main goal is to prove the next proposition. Let
us recall the smallness assumption in Theorem 1:

(2.3) ‖n0‖L1(R2) + ‖c0‖(L∞∩Ḣ1)(R2) + ‖ω0‖L1(R2) < ǫ1,

where ω0 = ∇× u0.

Proposition 1. Assume the condition of Theorem 1 holds. The classical so-

lutions (n, c, ω) of (1.7)-(1.10) exist globally and (n, c, ω) satisfy the following

time decay:

(2.4) ‖n(t)‖L∞(R2) ≤
Cǫ1
t
, ‖∇n(t)‖L∞(R2) ≤

Cǫ1

t
3
2

,

(2.5) ‖∇c(t)‖L∞(R2) ≤
Cǫ1

t
1
2

, ‖∇2c(t)‖L∞(R2) ≤
Cǫ1
t
,

(2.6) ‖ω(t)‖Lr(R2) ≤
Cǫ1

t1−
1
r

, 1 < r <∞, ‖∇ω(t)‖Lr(R2) ≤
Cǫ1

t
3
2
− 1

r

, 1 ≤ r < 2.

The proof of Proposition 1 will be presented in the series of lemmas. Lemma
4 considers the decays of ‖n‖L∞(t), ‖∇c‖L∞(t), ‖ω‖Lr(t), and Lemma 5 shows
the decays of quantities with derivatives. Notice that the decay rates in (2.4)
and (2.6) are the same as in the Lq − L1 estimate for the two dimensional
heat equation. In this regard our approach is to see the system (1.1) as the
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perturbed heat equations with the smallness assumption (1.13), and to apply
the linear heat kernel estimates

(2.7) ‖∇αe−∆tu‖Lq(R2) ≤ Ct−(1/r−1/q)−|α|/2‖u‖Lr(R2), 1 ≤ r ≤ q ≤ ∞.

In doing so, we need an intermediate step (Lemma 3 shown below), which
establishes (n,∇c, ω) to be small in a weighted norms in time variable (Lemma
4 and Lemma 5 shown below). This types of estimates for weighted norms
can be found in [20]. Due to Lemma 3 we work out Lemma 4 and Lemma 5
so that the nonlinear terms in the Duhamel’s formula are estimated by either
quadratic terms or terms multiplied with small parameter ǫ1 (see e.g. (2.35)).
Let us introduce some spaces of functions defined as follows:

(2.8) ‖n‖Kp(R2) := sup
t≥0

t1−
1
p ‖n(t)‖Lp(R2) ,

(2.9) ‖c‖Nq(R2) := sup
t≥0

t
1
2
− 1

q ‖∇c(t)‖Lq(R2) ,

(2.10) ‖ω‖Kr(R2) := sup
t≥0

t1−
1
r ‖ω(t)‖Lr(R2) .

For convenience, we denote

‖(n, c, u)‖Kp,q,r
:= ‖n‖Kp

+ ‖c‖Nq
+ ‖ω‖Kr

.

Lemma 3. Let n, c and ω be solutions of (1.7)-(1.10). Suppose that the as-

sumptions in Theorem 1 are satisfied, and p, q, r are in the range of

(2.11)
4

3
< p < 2, 2 < q < 4, 1 < r < 2.

Then, we have

(2.12) ‖(n, c, ω)‖Kp,q,r
≤ C(‖n0‖L1 + ‖c0‖L∞∩Ḣ1 + ‖ω0‖L1) ≤ Cǫ1.

Proof. First, we write the equations as integral representation.

n(t) = et∆n0 −

∫ t

0

∇e(t−s)∆ (χ(c)n(s)∇c(s)) ds(2.13)

−

∫ t

0

∇e(t−s)∆ (u(s)n(s)) ds,

(2.14) c(t) = et∆c0 −

∫ t

0

e(t−s)∆ (k(c)n(s)) ds−

∫ t

0

e(t−s)∆ (u(s)∇c(s)) ds,

(2.15) ω(t) = et∆ω0−

∫ t

0

∇⊥e(t−s)∆ (n(s)∇φ) ds−

∫ t

0

∇e(t−s)∆ (u(s)ω(s)) ds,

where ∇⊥ = (−∂x2
, ∂x1

). Using the estimate of the heat kernel, we obtain

‖n(t)‖Lp . t−1+ 1
p ‖n0‖L1 +

∫ t

0

∥∥∥∇e(t−s)∆n(s)∇c(s)
∥∥∥
Lp
ds
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+

∫ t

0

∥∥∥∇e(t−s)∆u(s)n(s)
∥∥∥
Lp
ds

. t−1+ 1
p ‖n0‖L1 +

∫ t

0

1

(t− s)
3
2
− 1

α

‖n(s)‖Lp ‖∇c(s)‖Lq ds

+

∫ t

0

1

(t− s)
3
2
− 1

α′

‖u(s)‖
L

2r
2−r

‖n(s)‖Lp ds

:= t−1+ 1
p ‖n0‖L1 + I1 + I2,(2.16)

where 1 + 1
p
= 1

α
+ 1

p
+ 1

q
and 3

2 − 1
r
= 1

α′
. We estimate I1 and I2 as follows:

I1 .

∫ t

0

1

(t− s)
3
2
− 1

α

·
1

s
3
2
− 1

p
− 1

q

ds ‖n‖Kp
‖c‖Nq

.
1

t1−
1
p

‖n‖Kp
‖c‖Nq

,

I2 .

∫ t

0

1

(t− s)
3
2
− 1

α′

·
1

s2−
1
r
− 1

p

ds ‖ω‖Kr
‖n‖Kp

.
1

t1−
1
p

‖ω‖Kr
‖n‖Kp

,

where we used (2.1). Therefore, we obtain

(2.17) ‖n‖Kp
≤ C ‖n0‖L1 + C ‖n‖Kp

‖c‖Nq
+ C ‖ω‖Kr

‖n‖Kp
.

We first recall that

(2.18)
∥∥∇et∆c0

∥∥
Lq ≤ Ct−( 1

2
− 1

q
) ‖∇c0‖L2 .

Using the above estimate (2.18), we obtain

‖c‖Nq
≤ C ‖∇c0‖L2 + C sup |k(c)| ‖n‖Kp

+ C ‖c‖Nq
‖ω‖Kr

≤ C ‖∇c0‖L2 + C ‖k(c)‖L∞
‖n‖Kp

+ C ‖c‖Nq
‖ω‖Kr

.(2.19)

Next, we estimate the vorticity. Using estimates of the heat kernel as in (2.16),
we obtain

‖ω(t)‖Lr . t−1+ 1
r ‖ω0‖L1 +

∫ t

0

∥∥∥∇e(t−s)∆n(s)∇φ
∥∥∥
Lr

+

∫ t

0

∥∥∥∇e(t−s)∆u(s)ω(s)
∥∥∥
Lr

. t−1+ 1
r ‖ω0‖L1 +

∫ t

0

1

(t− s)
3
2
− 1

α

‖n(s)‖Lp ‖∇φ‖L2

+

∫ t

0

1

(t− s)
3
2
− 1

α′

‖u‖
L

2r
2−r

‖ω‖Lr

= t−1+ 1
r ‖ω0‖L1 + J1 + J2,

where 1
r
= 1

α
+ 1

p
− 1

2 and 1
α′

= 3
2 − 1

r
. Similar estimates as above yield

J1 .

∫ t

0

1

(t− s)
3
2
− 1

α

1

s1−
1
p

ds ‖∇φ‖L2 ‖n‖Kp
.

1

t1−
1
r

‖∇φ‖L2 ‖n‖Kp
.
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On the other hand, via ‖u(t)‖Ls . ‖ω(t)‖Lr with 1/r = 1/s+ 1/2, we obtain

J2 .

∫ t

0

1

(t− s)
3
2
− 1

α′

1

s2(1−
1
r
)
ds ‖ω‖

2
Kr

.
1

t1−
1
r

‖ω‖
2
Kr
.

Thus, we have

(2.20) ‖ω‖Kr
≤ C ‖ω0‖L1 + C ‖∇φ‖L2 ‖n‖Kp

+ C ‖ω‖2Kr
.

Here we set M1 := C ‖k(c)‖L∞
and M2 := C ‖∇φ‖L2 , where C are the con-

stants in (2.19) and (2.20). Multiplying (2.17) with 2(M1 +M2) and summing
up the above estimates,

(M1 +M2) ‖n‖Kp
+ ‖c‖Nq

+ ‖ω‖Kr

≤ C(2(M1 +M2) ‖n0‖L1 + ‖c0‖L∞∩Ḣ1 + ‖ω0‖L1)

+ 2C(M1 +M2) ‖n‖Kp
‖c‖Nq

+ 2C(M1 +M2) ‖ω‖Kr
‖n‖Kp

+ C ‖c‖Nq
‖ω‖Kr

+ C ‖ω‖
2
Kr
.(2.21)

Therefore, we obtain
(2.22)

‖(n, c, ω)‖Kp,q,r
≤ C(‖n0‖L1 + ‖c0‖L∞∩Ḣ1 + ‖ω0‖L1) + C ‖(n, c, ω)‖

2
Kp,q,r

.

We deduce the lemma by the standard theory of local well-posedness argument.
�

Next we show the decay of (n,∇c, ω) in L∞ × L∞ × Lr for 2 ≤ r <∞.

Lemma 4. Let n, c and ω be solutions of (1.7)-(1.10). If the assumptions in

Theorem 1 are satisfied, then

‖n(t)‖L∞(R2) ≤
Cǫ1
t
, ‖∇c(t)‖L∞(R2) ≤

Cǫ1

t
1
2

,(2.23)

‖ω(t)‖Lr(R2) ≤
Cǫ1

t1−
1
r

, 2 ≤ r <∞.(2.24)

Proof. For convenience, we denote

‖n‖K
∞

(R2) := sup
t≥0

t ‖n(t)‖L∞(R2) , ‖c‖N
∞

(R2) := sup
t≥0

t
1
2 ‖∇c(t)‖L∞(R2) ,

‖ω‖Kr(R2) := sup
t≥0

t1−
1
r ‖ω(t)‖Lr(R2) , 1 < r <∞.

Using the estimate of heat kernel, we obtain

‖n‖L∞
(t) .

1

t
‖n0‖L1 +

∫ t

0

∥∥∥∇e(t−s)∆n∇c
∥∥∥
L∞

(s)ds

+

∫ t

0

∥∥∥∇e(t−s)∆un
∥∥∥
L∞

(s)ds

=
1

t
‖n0‖L1 + I1 + I2.
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We first estimate I1.

I1 .

∫ t/2

0

1

(t− s)
3
2

‖n∇c‖L1 (s)ds+

∫ t

t/2

1

(t− s)
1
2

‖n∇c‖L∞
(s)ds

.

∫ t/2

0

1

(t− s)
3
2

‖n‖L1 ‖∇c‖L∞
ds+

∫ t

t/2

1

(t− s)
1
2

‖n‖L∞
‖∇c‖L∞

ds

.
ǫ1
t
‖∇c‖N

∞
(R2) +

1

t
‖n‖K

∞
(R2) ‖c‖N

∞
(R2) ,(2.25)

where we used (2.2). For convenience, we introduce Hölder conjugate numbers
2+ and 2− so that

1/2+ = 1/2− 1/α, 1/2− = 1/2 + 1/α, 2 < α <∞.

We then estimate I2 as follows:

I2(2.26)

.

∫ t/2

0

1

(t− s)
3
2

‖un‖L1 (s)ds+

∫ t

t/2

1

(t− s)
3
2
− 1

2−

‖un‖
L2+ (s)ds

.

∫ t/2

0

1

(t− s)
3
2

‖u‖
L2+ ‖n‖

L2− ds+

∫ t

t/2

1

(t− s)
3
2
− 1

2−

‖u‖
L2+ ‖n‖L∞

ds

.

∫ t/2

0

1

(t− s)
3
2

‖u‖
L2+ ‖n‖

L2− ds+

∫ t

t/2

1

(t− s)
3
2
− 1

2−

‖u‖
L2+ ‖n‖L∞

ds

.
1

t
3
2

∫ t/2

0

‖ω‖
L

α
α−1

‖n‖
L2− ds+

∫ t

t/2

1

(t− s)
3
2
− 1

2−

‖ω‖
L

α
α−1

‖n‖L∞
ds

.
1

t
‖n‖K

2−
(R2) ‖ω‖K α

α−1
(R2) +

1

t
‖ω‖K α

α−1
(R2) ‖n‖K

∞
(R2)

.
ǫ21
t
+
ǫ1
t
‖n‖K

∞
(R2) ,

where we used the result in Lemma 3. Adding the estimates, we obtain
(2.27)

‖n‖L∞
(t) .

ǫ1
t
+
ǫ1
t
‖n‖K

∞
(R2) +

ǫ1
t
‖c‖N

∞
(R2) +

1

t
‖n‖K

∞
(R2) ‖c‖N

∞
(R2) .

On the other hand, ∇c is computed as follows:

‖∇c‖ (t) .
1

t
1
2

‖c0‖L∞
+

∫ t

0

∥∥∥∇e(t−s)∆kn
∥∥∥
L∞

(s)ds

+

∫ t

0

∥∥∥∇e(t−s)∆(u∇c)
∥∥∥
L∞

(s)ds

=
1

t
1
2

‖c0‖L∞
+ J1 + J2.
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Firstly, we estimate J1.

J1 .

∫ t/2

0

1

(t− s)
3
2

‖kn(s)‖L1 ds+

∫ t

t/2

1

(t− s)
1
2

‖kn(s)‖L∞
ds

.
1

t
1
2

‖k(c)‖L∞
‖n‖L1 +

1

t
1
2

‖k(c)‖L∞
‖n‖K

∞
(R2)

.
ǫ1

t
1
2

+
ǫ1

t
1
2

‖n‖K
∞

(R2) .(2.28)

Before we estimate J2, we set 1/4+ = 1/4 − 1/β and 1/4− = 1/4 + 1/β with
β > 4. We then estimate J2.

J2 .

∫ t/2

0

1

t− s
‖u∇c‖L2 ds+

∫ t

t/2

1

(t− s)
3
2
− 1

2−

‖u∇c‖
L2+ (s)ds

(2.29)

.
1

t

∫ t/2

0

‖u‖
L4+ ‖∇c‖

L4− ds+

∫ t

t/2

1

(t− s)
3
2
− 1

2−

‖u‖
L2+ ‖∇c‖L∞

(s)ds

.
1

t

∫ t/2

0

‖ω‖
L

4β
3β−4

‖∇c‖
L4− ds+

∫ t

t/2

1

(t− s)
3
2
− 1

2−

‖ω‖
L

α
α−1

‖∇c‖L∞
(s)ds

.
1

t
1
2

‖ω‖K 4β
3β−4

(R2) ‖c‖N
4−

(R2) +
1

t
1
2

‖ω‖K α
α−1

(R2) ‖c‖N
∞

(R2)

.
ǫ21

t
1
2

+
ǫ1

t
1
2

‖c‖N
∞

(R2) ,

where the result in Lemma 3 is used. Combining (2.28) and (2.29), we have

(2.30) ‖∇c‖L∞
(t) .

ǫ1

t
1
2

+
ǫ1

t
1
2

‖n‖K
∞

(R2) +
ǫ1

t
1
2

‖c‖N
∞

(R2) .

Next, we estimate the vorticity. For any 1 ≤ r <∞

‖ω(t)‖Lr . t−1+ 1
r ‖ω0‖L1 +

∫ t

0

∥∥∥∇⊥e(t−s)∆̃ (n(s)∇φ)
∥∥∥
Lr
ds

+

∫ t

0

∥∥∥∇e(t−s)∆̃ (uω)
∥∥∥
Lr
ds

= t−1+ 1
r ‖ω0‖L1 + L1 + L2.

If we restrict 2 ≤ r, we have

L1 .

∫ t/2

0

1

(t− s)
3
2
− 1

r

‖n(s)‖L2 ‖∇φ‖L2

+

∫ t

t/2

1

(t− s)1−
1
r

‖n(s)‖L∞‖∇φ‖L2

.

∫ t/2

0

1

(t− s)
3
2
− 1

r

‖n(s)‖
1
2

L1 ‖n(s)‖
1
2

L∞
‖∇φ‖L2
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+

∫ t

t/2

1

(t− s)1−
1
r

‖n(s)‖L∞
‖∇φ‖L2

.
ǫ1

t1−
1
r

+
1

t1−
1
r

‖n‖K
∞

(R2) ,(2.31)

where we used the Hölder’s inequality and Young’s inequality. The exponents
r∗, r̃ are defined by 1/r∗ = 1/2− 1/r and 1/r∗ = 1/r̃ − 1/2. Now we estimate
L2.

L2 .

∫ t/2

0

1

(t− s)
3
2
− 1

2−

‖u‖
L2+ ‖ω‖Lr +

∫ t

t/2

1

(t− s)1−
1
r

‖u‖Lr∗ ‖ω‖Lr

.
1

t
3
2
− 1

2−

∫ t/2

0

‖ω‖
L

α
α−1

‖ω‖Lr +

∫ t

t/2

1

(t− s)1−
1
r

‖ω‖Lr̃ ‖ω‖Lr

.
1

t1−
1
r

‖ω‖K α
α−1

(R2) ‖ω‖Kr(R2) +
1

t1−
1
r

‖ω‖Kr̃(R2) ‖ω‖Kr(R2)

.
ǫ1

t1−
1
r

‖ω‖Kr(R2) ,(2.32)

where the result in Lemma 3 is used. Therefore, we have

(2.33) ‖ω(t)‖Lr .
ǫ1

t1−
1
r

+
1

t1−
1
r

‖n‖K
∞

(R2) +
ǫ1

t1−
1
r

‖ω‖Kr(R2) .

Using the estimate (2.27), we obtain
(2.34)
‖ω‖Kr(R2) . ǫ1 + ǫ1 ‖n‖K

∞
(R2) + ǫ1 ‖c‖N

∞

+ ‖n‖K
∞

‖c‖N
∞

+ ǫ1 ‖ω‖Kr(R2) .

Combining estimates (2.27), (2.30) and (2.34), we obtain
(2.35)
‖n‖K

∞

+ ‖c‖N
∞

+ ‖ω‖Kr
. ǫ1 + ǫ1(‖n‖K

∞

+ ‖c‖N
∞

+ ‖ω‖Kr
)+ ‖n‖K

∞

‖c‖N
∞

.

This completes the proof. �

We remark that the case r = ∞ in (2.24) is missing due to Sobolev embed-
ding inequalities.

Next we show estimates of higher derivatives. For convenience, we denote

‖∇n‖K1
∞

(R2) := sup
t≥0

t
3
2 ‖∇n(t)‖L∞(R2) ,

∥∥∇2c
∥∥
K

∞
(R2)

:= sup
t≥0

t
∥∥∇2c(t)

∥∥
L∞(R2)

,

‖∇ω‖K1
r(R

2) := sup
t≥0

t
3
2
− 1

r ‖∇ω(t)‖Lr(R2) , 1 ≤ r < 2.

Lemma 5. Let n, c and ω be solutions of (1.7)-(1.10). If the assumptions in

Theorem 1 are satisfied, then

(2.36)
∥∥∇2c

∥∥
L∞

(t) ≤
Cǫ1
t
, ‖∇n‖L∞

(t) ≤
Cǫ1

t
3
2

,

(2.37) ‖∇ω‖Lr (t) ≤
Cǫ1

t
3
2
− 1

r

, 1 ≤ r < 2.
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Proof. We first estimate ∇2c.

∥∥∇2c
∥∥ (t) . 1

t
‖c0‖L∞

+

∫ t
2

0

∥∥∥∇2e(t−s)∆kn
∥∥∥
L∞

(s)ds

+

∫ t

t
2

∥∥∥∇e(t−s)∆∇(kn)
∥∥∥
L∞

(s)ds+

∫ t
2

0

∥∥∥∇2e(t−s)∆u∇c
∥∥∥
L∞

(s)ds

+

∫ t

t
2

∥∥∥∇e(t−s)∆∇(u∇c)
∥∥∥
L∞

(s)ds.

Consider the second term in the rightside.
∫ t

2

0

∥∥∥∇2e(t−s)∆kn
∥∥∥
L∞

(s)ds .

∫ t
2

0

1

(t− s)2
‖n‖L1 ‖k(c)‖L∞

ds .
ǫ1
t
.

The third term is estimated as follows:
∫ t

t
2

∥∥∥∇e(t−s)∆∇(kn)
∥∥∥
L∞

(s)ds

.

∫ t

t
2

1

(t− s)
1
2

[‖k′(c)‖L∞
‖∇cn‖L∞

+ ‖k(c)‖L∞
‖∇n‖L∞

](s)ds

. ‖k′(c)‖L∞

∫ t

t
2

1

(t− s)
1
2 s

3
2

ds+ ‖k(c)‖L∞
‖∇n‖K1

∞

∫ t

t
2

1

(t− s)
1
2 s

3
2

ds

.
ǫ1
t
+
ǫ1
t
‖∇n‖K1

∞

.

We estimate the fourth and fifth terms.
∫ t

2

0

∥∥∥∇2e(t−s)∆u∇c
∥∥∥
L∞

(s)ds .

∫ t
2

0

1

(t− s)
5
3

‖u∇c‖
L

3
2
(s)ds

.

∫ t
2

0

1

(t− s)
5
3

‖u‖L3 ‖∇c‖L3 (s)ds

.

∫ t
2

0

1

(t− s)
5
3

‖ω‖
L

6
5
‖∇c‖L3 (s)ds ≤

ǫ1
t
.

For p > 2 and 1 < q < 2 with 1/p+ 1/q = 1
∫ t

t
2

∥∥∥∇e(t−s)∆∇(u∇c)
∥∥∥
L∞

(s)ds

.

∫ t

t
2

1

(t− s)
3
2
− 1

q

(‖∇u∇c‖Lp +
∥∥u∇2c

∥∥
Lp)(s)ds

.

∫ t

t
2

1

(t− s)
3
2
− 1

q

(‖ω‖Lp ‖∇c‖L∞
+ ‖u‖Lp

∥∥∇2c
∥∥
L∞

)(s)ds

.
ǫ1
t
+
ǫ1
t

∥∥∇2c
∥∥
K

∞

.
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Summing up all estimates, we obtain

(2.38)
∥∥∇2c

∥∥
K

∞

. ǫ1 + ǫ1
∥∥∇2c

∥∥
K

∞

+ ǫ1 ‖∇n‖K1
∞

.

Next we consider ∇n.

‖∇n‖L∞
(t) .

1

t
3
2

‖n0‖L1 +

∫ t
2

1

∥∥∥∇2e(t−s)∆[χn∇c]
∥∥∥
L∞

(s)ds

+

∫ t

t
2

∥∥∥∇e(t−s)∆∇[χn∇c]
∥∥∥
L∞

(s)ds

+

∫ t
2

0

∥∥∥∇2e(t−s)∆[un]
∥∥∥
L∞

(s)ds

+

∫ t

t
2

∥∥∥∇e(t−s)∆[u∇n]
∥∥∥
L∞

(s)ds.

First, we compute

∫ t
2

1

∥∥∥∇2e(t−s)∆[χn∇c]
∥∥∥
L∞

(s)ds ≤

∫ t
2

1

1

(t− s)2
‖n∇c‖L1

.
ǫ1
t2

∫ t
2

1

1

s
1
2

ds .
ǫ1

t
3
2

.

Secondly,

∫ t

t
2

∥∥∥∇e(t−s)∆∇[χn∇c]
∥∥∥
L∞

(s)ds

≤

∫ t

t
2

1

(t− s)
1
2

(‖∇n∇c‖L∞
+
∥∥n∇2c

∥∥
L∞

+
∥∥∥n |∇c|2

∥∥∥
L∞

)(s)ds

. ‖∇n‖K1
∞

∫ t

t
2

ǫ1

(t− s)
1
2 s2

ds+
∥∥∇2c

∥∥
K

∞

∫ t

t
2

ǫ1

(t− s)
1
2 s2

ds+

∫ t

t
2

ǫ1

(t− s)
1
2 s2

ds

.
ǫ1

t
3
2

‖∇n‖K1
∞

+
ǫ1

t
3
2

∥∥∇2c
∥∥
K

∞

+
ǫ1

t
3
2

.

Thirdly,

∫ t
2

0

∥∥∥∇2e(t−s)∆[un]
∥∥∥
L∞

(s)ds .

∫ t
2

0

1

(t− s)
5
3

‖un‖
L

3
2
(s)ds

.

∫ t
2

0

1

(t− s)
5
3

‖u‖L3 ‖n‖L3 (s)ds

.

∫ t
2

0

1

(t− s)
5
3

‖ω‖
L

6
5
‖n‖L3 (s)ds ≤

ǫ1

t
3
2

.
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Lastly, for p > 2 and 1 < q < 2 with 1/p+ 1/q = 1
∫ t

t
2

∥∥∥∇e(t−s)∆[u∇n]
∥∥∥
L∞

(s)ds .

∫ t

t
2

1

(t− s)
3
2
− 1

q

‖u∇n‖Lp (s)ds

.

∫ t

t
2

1

(t− s)
3
2
− 1

q

‖u‖Lp (s) ‖∇n‖L∞
(s)ds

.
ǫ1

t
3
2

‖∇n‖K1
∞

.

Summing up, we obtain

(2.39) ‖∇n‖K1
∞

. ǫ1 ‖∇n‖K1
∞

+ ǫ1
∥∥∇2c

∥∥
K

∞

+ ǫ1.

Combining (2.38) and (2.39), we obtain the first assertion of the lemma:

(2.40) ‖∇n‖K1
∞

+ ‖∇2c‖K
∞

≤ Cǫ1.

With the above estimate in hands, it is easy to show ‖∇n‖L2 satisfy the fol-
lowing decay:

(2.41) ‖∇n‖L2(t) ≤
ǫ1
t
.

We consider the vorticity equation. Using the integral representation, we
compute

‖∇ω‖Lr(t) .
1

t
3
2
− 1

r

‖ω0‖L1 +

∫ t
2

0

∥∥∥∇2e(t−s)∆[uω]
∥∥∥
Lr

(s)ds

+

∫ t

t
2

∥∥∥∇e(t−s)∆[u∇ω]
∥∥∥
Lr

(s)ds+

∫ t
2

0

∥∥∥∇2e(t−s)∆[n∇φ]
∥∥∥
Lr

(s)ds

+

∫ t

t
2

∥∥∥∇e(t−s)∆∇[n∇φ]
∥∥∥
Lr

(s)ds.

First, for p > 2 and 1 < q < 2 with 1/p+ 1/q = 1

∫ t
2

0

∥∥∥∇2e(t−s)∆[uω]
∥∥∥
Lr

(s)ds .

∫ t
2

0

1

(t− s)2−
1
r

‖u‖Lp ‖ω‖Lq (s)ds .
ǫ1

t
3
2
− 1

r

.

Secondly,
∫ t

t
2

∥∥∥∇e(t−s)∆[u∇ω]
∥∥∥
Lr

(s)ds .

∫ t

t
2

1

(t− s)
3
2
− 1

q

‖u‖Lp ‖∇ω‖Lr (s)ds

.
ǫ1

t
3
2
− 1

r

‖∇ω‖K1
r
.

Thirdly,
∫ t

2

0

∥∥∥∇2e(t−s)∆[n∇φ]
∥∥∥
Lr

(s)ds .

∫ t
2

0

1

(t− s)2−
1
r

‖n‖L2 ‖∇φ‖L2 (s)ds ≤
ǫ1

t
3
2
− 1

r

.
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Lastly,
∫ t

t
2

∥∥∥∇e(t−s)∆∇[n∇φ]
∥∥∥
Lr

(s)ds

.

∫ t

t
2

∥∥∥∇e(t−s)∆[∇n∇φ+ n∇2φ]
∥∥∥
Lr

(s)ds

.

∫ t

t
2

∥∥∥∇e(t−s)∆[∇n∇φ+ n∇2φ]
∥∥∥
Lr

(s)ds

.

∫ t

t
2

1

(t− s)
3
2
− 1

r

‖∇n‖L2 ‖∇φ‖L2 ds+

∫ t

t
2

1

(t− s)
3
2
− 1

r

‖n‖L∞

∥∥∇2φ
∥∥
L1 ds

.
ǫ1

t
3
2
− 1

r

by (2.41) and Lemma 4. Summing up, we obtain

(2.42) ‖∇ω‖K1
r
. ǫ1 + ǫ1 ‖∇ω‖K1

r
.

This completes the proof of the second assertion of Lemma 5. �

Remark 3. The restriction that r < 2 in (2.37) is due to absence of temporal
decay of φ, since φ is independent of time. We leave it open question whether
or not the estimate (2.37) is available for r ≥ 2.

Proof of Propostion 1. The decay estimate of solutions is the consequence of
consecutive Lemma 3-Lemma 5. �

3. Proof of Theorem 1

In this section, we present the proof of Theorem 1.

Proof of Theorem 1. We define the family of rescaled solutions in R
2 1

nk(x, t) = k2n(kx, k2t), ck(x, t) = c(kx, k2t),

uk(x, t) = ku(kx, k2t), φk(x) = φ(kx)

with (sufficiently regular) initial data

nk,0(x) = k2n0(kx), ck,0(x) = c0(kx), uk,0(x) = ku0(kx).

For the vorticity field, we have following rescaled solutions and initial data

ωk(x, t) = k2ω(kx, k2t), ωk,0(x) = k2ω0(kx).

We recall some invariant quantities (independent of k), which are

‖nk(t)‖L1 = ‖n(t)‖L1 = ‖n0‖L1 , ‖ck,0‖L∞ = ‖c0‖L∞, ‖∇ck,0‖L2 = ‖∇c0‖L2 ,

‖ωk,0‖L1 = ‖ω0‖L1 ,

∫

R2

ω(t)dx =

∫

R2

ωk(t)dx =

∫

R2

ω0dx.

1 (nk , ck, uk) solve system (1.1) with the potential φk, instead of φ.
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Therefore, the smallness assumption (1.13) is likewise valid for (nk,0, ck,0, ωk,0),
namely

‖nk,0‖L1(R2) + ‖ck,0‖(L∞∩Ḣ1)(R2) + ‖ωk,0‖L1(R2) < ǫ1.

We also note that the potential φk also remains invariant by norm of

(3.1) ‖∇φk‖L2 = ‖∇φ‖L2 .

From now on, we consider the vorticity equation, instead equation of velocity
fields. We then have global existence and time decay of solutions (nk, ck, ωk)
and sequence of functions also solves the system in a weak sense as follows:
(possibly subsequence) for ϕ ∈ C∞

0 (R2 × [0,∞)) it holds

∫ ∞

0

∫

R2

(∂tϕ+∆ϕ)nk + nkuk · ∇ϕ+ χ(ck)nk∇ck∇ϕdxdt=

∫

R2

nk,0ϕ(x, 0)dx,

∫ ∞

0

∫

R2

(∂tϕ+∆ϕ)ck + ckuk · ∇ϕ− k(ck)nkϕdxdt =

∫

R2

ck,0ϕ(x, 0)dx,

∫ ∞

0

∫

R2

(∂tϕ+∆ϕ)ωk + ωkuk · ∇ϕ+ nk∇φk∇
⊥ϕdxdt=

∫

R2

ωk(x, 0)ϕ(x, 0)dx.

(3.2)

In particular the time decay rates in Proposition 1 are scaling invariant, so
rescaled solutions also satisfy uniform estimates

‖nk(t)‖L∞(R2) ≤
Cǫ1
t
, ‖∇nk(t)‖L∞(R2) ≤

Cǫ1

t
3
2

,

(3.3)

‖ck(t)‖(L∞∩Ḣ1)(R2) ≤ ǫ1, ‖∇ck(t)‖L∞(R2) ≤
Cǫ1

t
1
2

, ‖∇2ck(t)‖L∞(R2) ≤
Cǫ1
t
,

(3.4)

‖ωk(t)‖Lr(R2) ≤
Cǫ1

t1−
1
r

, 1 < r <∞, ‖∇ωk(t)‖Lr(R2) ≤
Cǫ1

t
3
2
− 1

r

, 1 ≤ r < 2.

(3.5)

Therefore, we have strong convergence of (nk, ck, ωk) in Lp ×W 1,p × Lr with
1 ≤ p < ∞ and 1 ≤ r < ∞ in any compact set in R

2 × (0,∞). Let us
denote limit functions by (ñ, c̃, ω̃) as k → ∞ (possibly subsequence of k). To
be more precise, there is a subsequence such that as kj tends to infinity, for
any 1 ≤ p <∞ , 1 ≤ r <∞ and for all R, ηǫ > 0

nkj
−→ ñ strongly in Lp(BR × (ηǫ, η

−1
ǫ )),

∇ckj
−→ ∇c̃ strongly in Lp(BR × (ηǫ, η

−1
ǫ )),

ωkj
−→ ω̃ strongly in Lr(BR × (ηǫ, η

−1
ǫ )).

We observe that (ñ, c̃, ω̃) satisfy the estimates (3.3)-(3.5) . Similarly we denote

by φ̃ the weak limit of φk, then ∇φ̃ ∈ L2(R) due to (3.1). Combining the strong
convergence in any compact domain of R2 × (0,∞) with these time decays, we
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can take the limit k → ∞ to (3.2), and show that (ñ, c̃, ω̃) solve the following
equations in a weak sense:






∂tñ+ ũ · ∇ñ−∆ñ = −∇ · (χ(c̃)ñ∇c̃),

∂tc̃+ ũ · ∇c̃−∆c̃ = −k(c̃)ñ,

∂tω̃ + ũ · ∇ω̃ −∆ω̃ = −∇× (ñ∇φ̃)

(3.6)

with initial data

(3.7) ñ0 = mδ0, c̃0 = 0, ω̃0 = γδ0,

where m is the total mass of n and γ is total circulation of ω. While the
proof for passing to limit goes on closely following [10, Section 2.5.1], for the
sake of concreteness we take some terms, say,

∫∞

0

∫
R2 χ(ck)nk∇ck∇ϕdxdt and∫∞

0

∫
R2 ωkuk∇ϕdxdt to show

lim
k→∞

∫ ∞

0

∫

R2

χ(ck)nk∇ck∇ϕdxdt =

∫ ∞

0

∫

R2

χ(c̃)ñ∇c̃∇ϕdxdt,

lim
k→∞

∫ ∞

0

∫

R2

ωkuk∇ϕdxdt =

∫ ∞

0

∫

R2

ω̃ũ∇ϕdxdt.

Let suppϕ ∈ BR × [0, T ]. We define

Fk(t) =

∫

BR

χ(ck)nk∇ck∇ϕdx, F (t) =

∫

BR

χ(c̃)ñ∇c̃∇ϕ.

Due to strong convergence we have Fk(t) → F (t) for t > 0. Using the decay

estimate (3.4), it holds that Fk(t) ≤ C(R)t−
1
2 , and we then have limk→0 Fk(t) =

F (t) via the dominated convergence theorem. For the second example we also
have ∫

B(R)

ωkuk∇ϕdx ≤ ‖ωk‖
L

4
3
‖uk‖L4‖∇ϕ‖L∞ ≤ C(R)t−

1
2 ,

where we used the embedding ‖uk‖L4 ≤ C‖ωk‖
L

4
3
and the estimate (3.5). In

fact, it holds that

(3.8) c̃ = 0, ∇φ̃ = 0.

Indeed, from the ck equation we have

‖ck(t)‖Lp ≤ ‖ck,0‖Lp = k−
2
p ‖c0‖Lp , 1 ≤ p ≤ ∞.

It implies c̃ = 0. Next we show that φ̃ is a function of homogeneity zero. If
l > 0 is fixed and ψ ∈ C∞

0 (R2), we have

lim
k→∞

∫

R2

φk(lx)ψ(x)dx = lim
k→∞

∫

R2

φ(klx)ψ(x)dx =

∫

R2

φ̃(x)ψ(x)dx.

On the other hand, denoting ψl(y) := ψ(l−1y), we see that

lim
k→∞

∫

R2

φk(lx)ψ(x)dx = lim
k→∞

∫

R2

l−2φk(y)ψ(l
−1y)dy
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= l−2

∫

R2

φ̃(y)ψl(y)dy =

∫

R2

φ̃(lx)ψ(x)dx.

Therefore, ∇φ̃ is a function of homogeneity 1, namely ∇φ(x) = l∇φ(lx), which

implies ∇φ̃ = 0, since ∇φ̃ ∈ L2(R2). On account of (3.8), the system (3.6)-
(3.7) is reduced to

{
∂tñ+ ũ · ∇ñ−∆ñ = 0,

∂tω̃ + ũ · ∇ω̃ −∆ω̃ = 0

with initial data

ñ0 = mδ0, ω̃0 = γδ0.

It is well established that the vorticity equation of Navier-Stokes equation with
the dirac-delta initial data has the unique solution

w̃(x, t) = γΓ(x, t).

We refer to [9] and [10], and references cited therein. In particular

ũ = K ∗ ω̃, K(x) = ∇⊥ log |x| = 〈−
x2

|x|
2 ,

x1

|x|
2 〉,

which implies ũ · ∇ñ = 0 by Lemma 2 . Then ñ equation is reduced to

∂tñ−∆ñ = 0

with initial data ñ0 = mδ0. As a direct application of Theorem 4.4.2 in [10],
the above equation has the unique solution

ñ(x, t) = mΓ(x, t).

The asymptotics are obtained as follows. When t = 1, tending to zero as
kj → ∞, we have

(3.9) lim
kj→∞

∥∥nkj
(·, 1)− ñ(·, 1)

∥∥
L∞(BR)

= 0.

Using ñ = mΓ is self-similar, we observe that

nkj
(x, 1)− ñ(x, 1) = k2jn(kjx, k

2
j )− k2j ñ(kjx, k

2
j ).

Setting t = k2j , (3.9) can be rewritten as

(3.10) t ‖(n(·, t)− ñ(·, t))‖L∞(Bt,R) −→ 0 as t→ ∞,

where Bt,R = {x : |x| <
√
tR}. Similarly, for any r <∞ we obtain

(3.11) t1−
1
r ‖(ω(·, t)− ω̃(·, t))‖Lr(Bt,R) −→ 0 as t→ ∞.

Since we also have a convergence of ∇c to ∇c̃ = 0, we can see that

(3.12) t
1
2 ‖∇c(·, t)‖L∞(Bt,R) −→ 0 as t→ ∞.

Here the point is that the decay estimates are independent of k. Since ñ(x, t) =
mΓ(x, t) and ω̃(x, t) = γΓ(x, t), we complete the proof. �
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