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VARIATIONAL ANALYSIS OF AN ELECTRO-VISCOELASTIC

CONTACT PROBLEM WITH FRICTION AND ADHESION

Nadhir Chougui, Salah Drabla, and Nacerdinne Hemici

Abstract. We consider a mathematical model which describes the qua-
sistatic frictional contact between a piezoelectric body and an electri-
cally conductive obstacle, the so-called foundation. A nonlinear electro-
viscoelastic constitutive law is used to model the piezoelectric mate-
rial. Contact is described with Signorini’s conditions and a version of
Coulomb’s law of dry friction in which the adhesion of contact surfaces
is taken into account. The evolution of the bonding field is described
by a first order differential equation. We derive a variational formula-

tion for the model, in the form of a system for the displacements, the
electric potential and the adhesion. Under a smallness assumption which
involves only the electrical data of the problem, we prove the existence of
a unique weak solution of the model. The proof is based on arguments of
time-dependent quasi-variational inequalities, differential equations and
Banach’s fixed point theorem.

1. Introduction

The piezoelectric effect is characterized by such a coupling between the me-
chanical and electrical properties of the materials. This coupling, leads to the
appearance of electric field in the presence of a mechanical stress, and con-
versely, mechanical stress is generated when electric potential is applied. The
first effect is used in sensors, and the reverse effect is used in actuators.

On a nano-scale, the piezoelectric phenomenon arises from a nonuniform
charge distribution within a crystal’s unit cell. When such a crystal is de-
formed mechanically, the positive and negative charges are displaced by a dif-
ferent amount causing the appearance of electric polarization. So, while the
overall crystal remains electrically neutral, an electric polarization is formed
within the crystal. This electric polarization due to mechanical stress is called
piezoelectricity. A deformable material which exhibits such a behavior is called
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a piezoelectric material. Piezoelectric materials for which the mechanical prop-
erties are elastic are also called electro-elastic materials and piezoelectric mate-
rials for which the mechanical properties are viscoelastic are also called electro-

viscoelastic materials.

Only some materials exhibit sufficient piezoelectricity to be useful in appli-
cations. These include quartz, Rochelle salt, lead titanate zirconate ceram-
ics, barium titanate, and polyvinylidene flouride (a polymer film), and are
used extensively as switches and actuators in many engineering systems, in
radioelectronics, electroacoustics and in measuring equipment. General mod-
els for electro-elastic materials can be found in [23, 24] and, more recently,
in [3, 19, 25]. A static and a slip-dependent frictional contact problems for
electro-elastic materials were studied in [4, 22] and in [31], respectively. A
contact problem with normal compliance for electro-viscoelastic materials was
investigated in [32]. In the last two references the foundation was assumed to
be insulated. The variational formulations of the corresponding problems were
derived and existence and uniqueness of weak solutions were obtained.

Here we continue this line of research and study a quasistatic frictionless
contact problem for an electro-viscoelastic material, in the framework of the
MTCM, when the foundation is conductive; our interest is to describe a physi-
cal process in which both contact, friction and piezoelectric effect are involved,
and to show that the resulting model leads to a well-posed mathematical prob-
lem. Taking into account the conductivity of the foundation leads to new and
nonstandard boundary conditions on the contact surface, which involve a cou-
pling between the mechanical and the electrical unknowns, and represents the
main novelty in this work.

The adhesive contact between deformable bodies, when a glue is added to
prevent relative motion of the surfaces, has received recently increased attention
in the mathematical literature. Basic modelling can be found in [13], [15] and in
[9]. Analysis of models for adhesive contact can be found in [2]-[7], [16] and in
the recent monographs [29] and [30]. An application of the theory of adhesive
contact in the medical field of prosthetic limbs was considered in [27] and in
[28]; there, the importance of the bonding between the bone-implant and the
tissue was outlined, since debonding may lead to decrease in the persons ability
to use the artificial limb or joint.

Contact problems for elastic and elastic-viscoelastic bodies with adhesion
and friction appear in many applications of solids mechanics such as the fiber-
matrix interface of composite materials. A consistent model coupling unilateral
contact, adhesion and friction is proposed by Raous, Cangémi and Cocu in [26].
Adhesive problems have been the subject of some recent publications (see for
instance, [1], [6] and [9]). The novelty in all the above papers is the introduction
of a surface internal variable, the bonding field, denoted in this paper by β;
it describes the pointwise fractional density of active bonds on the contact
surface, and sometimes referred to as the intensity of adhesion. Following [13],
[14], the bonding field satisfies the restrictions 0 ≤ β ≤ 1; when β = 1 at
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a point of the contact surface, the adhesion is complete and all the bonds are
active; when β = 0 all the bonds are inactive, severed, and there is no adhesion;
when 0 < β < 1 the adhesion is partial and only a fraction β of the bonds is
active. We refer the reader to the extensive bibliography on the subject in [15]
and in [27].

The aim of this paper is to continue the study of problems begun in [11],
[20] and in [21]. The novelty of the present paper is to extend the result when
the contact and friction are modelled by Signorini’s conditions and a non local
Coulomb’s friction law. Moreover, the adhesion is taken into account at the
interface and the material behavior is assumed to be electro-viscoelastic.

The paper is structured as follows. In Section 2 we present the electro-
viscoelastic contact model with friction and adhesion and provide comments
on the contact boundary conditions. In Section 3 we list the assumptions on the
data and derive the variational formulation. In Section 4, we present our main
existence and uniqueness results, Theorem 4.1, which states the unique weak
solvability of the Signorini’s adhesive contact electro-viscoelastic problem with
non local Coulomb’s friction law conditions. The paper concludes in Section 5.

2. Problem statement

We consider a body made of a piezoelectric material which occupies the
domain Ω ⊂ R

d (d = 2, 3) with a smooth boundary ∂Ω = Γ and a unit outward
normal ν. The body is acted upon by body forces of density f0 and has
volume free electric charges of density q0. It is also constrained mechanically
and electrically on the boundary. To describe these conditions, we assume a
partition of Γ into three open disjoint parts Γ1, Γ2 and Γ3, on the one hand,
and a partition of Γ1 ∪ Γ2 into two open parts Γa and Γb, on the other hand.
We assume that measΓ1 > 0 and measΓa > 0; these conditions allow the
use of coercivity arguments which guarantee the uniqueness of the solution for
the model. The body is clamped on Γ1 and, therefore, the displacement field
u = (u1, . . . , ud) vanishes there. Surface tractions of density f2 act on Γ2.
We also assume that the electrical potential vanishes on Γa and a surface free
electrical charge of density q2 is prescribed on Γb. In the reference configuration
the body may come in contact over Γ3 with a conductive obstacle, which is
also called the foundation. The contact is frictional and is modelled with the
Signorini’s conditions and a version of Coulomb’s law of dry friction in which the
adhesion of contact surfaces is taken into account. Also, there may be electrical
charges on the part of the body which is in contact with the foundation and
which vanish when contact is lost.

We are interested in the evolution of the deformation of the body and of
the electric potential on the time interval [0, T ]. The process is assumed to be
isothermal, electrically static, i.e., all radiation effects are neglected, and me-
chanically quasistatic; i.e., the inertial terms in the momentum balance equa-
tions are neglected. We denote by x ∈ Ω ∪ Γ and t ∈ [0, T ] the spatial and the
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time variable, respectively, and, to simplify the notation, we do not indicate
in what follows the dependence of various functions on x and t. In this paper
i, j, k, l = 1, . . . , d, summation over two repeated indices is implied, and the
index that follows a comma represents the partial derivative with respect to
the corresponding component of x. A dot over a variable represents the time
derivative.

We use the notation S
d for the space of second order symmetric tensors on

R
d and “ · ” and ‖ · ‖ represent the inner product and the Euclidean norm on

S
d and R

d, respectively, that is u ·v = uivi, ‖v‖ = (v ·v)1/2 for u,v ∈ R
d, and

σ · τ = σijτij , ‖τ‖ = (τ · τ )1/2 for σ, τ ∈ S
d. We also use the usual notation

for the normal components and the tangential parts of vectors and tensors,
respectively, by uν = u · ν, uτ = u− uνν, σν = σijνiνj , and στ = σν − σνν.

With these assumptions, the classical formulation of the electro-viscoelastic
contact problem coupling friction and adhesion is the following.

Problem P. Find a displacement field u : Ω × [0, T ] → R
d, a stress field

σ : Ω × [0, T ] → S
d, an electric potential ϕ : Ω × [0, T ] → R, an electric

displacement field D : Ω × [0, T ] → R
d and a bonding field β : Ω× [0, T ] → R

such that

σ = Fε(u̇)+ Gε(u)− E∗E(ϕ) in Ω× (0, T ) ,(1)

D = Eε(u̇)+ βE(ϕ) in Ω× (0, T ) ,(2)

Divσ + f0 = 0 in Ω× (0, T ) ,(3)

div D = q0 in Ω× (0, T ) ,(4)

u = 0 on Γ1 × (0, T ) ,(5)

σν = f2 on Γ2 × (0, T ) ,(6)

and on Γ3 × (0, T ),

u̇ν ≤ 0, σν − γνβ
2Rν(u̇ν) ≤ 0, u̇ν(σν − γνβ

2Rν(u̇ν)) = 0,(7)





|στ + γτβ
2Rτ(u̇τ)| ≤ µp(|R(σν)− γνβ

2Rν(u̇ν)|),

|στ + γτβ
2Rτ(u̇τ)| < µp(|R(σν)− γνβ

2Rν(u̇ν)|) ⇒ u̇τ = 0,
|στ + γτβ

2Rτ(u̇τ)| = µp(|R(σν)− γνβ
2Rν(u̇ν)|)

⇒ ∃λ ≥ 0 such that στ + γτβ
2Rτ(u̇τ) = −λu̇τ ,

(8)

β̇ = −(β(γνRν(u̇ν)
2 + γτ‖Rτ (u̇τ )‖

2)− ǫa),(9)

and

ϕ = 0 on Γa × (0, T ), ,(10)

D·ν = q2 on Γb × (0, T ),(11)

D·ν = ψ(u̇ν)φ(ϕ − ϕ0) on Γ3 × (0, T ),(12)

β(0) = β0 on Γ3,(13)

u(0) = u0 in Ω.(14)
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We now provide some comments on equations and conditions (1)–(14).
Equations (1) and (2) represent the nonlinear electro viscoelastic constitu-

tive law in which ε(u) denotes the linearized strain tensor, E(ϕ) = −∇ϕ is the
electric field, where ϕ is the electric potential, F is a given nonlinear function,
E represents the piezoelectric operator, E∗ is its transposed, B denotes the elec-
tric permittivity operator, and D = (D1, . . . , Dd) is the electric displacement
vector. Details on the constitutive equations of the form (1) and (2) can be find,
for instance, in [3] and in [4]. Next, equations (3) and (4) are the equilibrium
equations for the stress and electric-displacement fields, respectively, in which
“Div” and “div” denote the divergence operator for tensor and vector valued
functions, respectively. Equations (5) and (6) represent the displacement and
traction boundary conditions.

Conditions (7) represents the Signorini’s contact condition with adhesion
where u̇ν is the normal velocity, σνrepresents the normal stress, γν denote a
given adhesion coefficient and Rν is the truncation operator define by

(15) Rν(s) =






Lν if s < −Lν ,
−s if − Lν ≤ s ≤ 0,
0 if s > 0,

where Lν > 0 is the characteristic length of the bond, beyond which it does not
offer any additional traction. The introduction of operator Rν , together with
the operator Rτ defined below, is motivated by the mathematical arguments
but it is not restrictive for physical point of view, since no restriction on the
size of the parameter L is made in what follows. Thus, by choosing L very
large, we can assume that Rν(uν) = −uν and, therefore, from (7) we recover
the contact conditions

u̇ν ≤ 0, σν + γνβ
2u̇ν ≤ 0, u̇ν(σν + γνβ

2u̇ν) = 0 on Γ3 × (0, T ).

Moreover, Conditions (7) shows when u̇ν < 0 then the reaction of foundation
is uniquely determined by σν = γνβ

2Rν(uν) and, when u̇ν = 0, the normal
stress is not uniquely determined but is submitted to the restriction σν ≤ 0.

Conditions (8) are a non local Coulomb’s friction law conditions coupled
with adhesion, where uτ and στ denote tangential components of vector u and
tensor σ respectively. Rτ is the truncation operator given by

Rτ (v) =






v if ‖v‖ ≤ Lτ ,

Lτ
v

‖v‖
if ‖v‖ > Lτ .

This condition shows that the magnitude of the shear on the contact surface
depends on the bonding field and on the tangential displacement, but as long
as it does not exceed the bond length L.

The introduction of the nonlocal smoothing operator R is for technical rea-
sons, since the trace of stress tensor on the boundary is too rough to be defined
in the ordinary sense.
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We shall need it to regularize the normal trace of the stress witch is too rough
on Γ. p is a non-negative function, the so-called friction bound, µ ≥ 0 is the
coefficient of friction. The friction law was used in some studies with p (r) = r+
where r+ = max{0, r}. Recently, from thermodynamic considerations, a new
version of Coulomb’s law is proposed; its consists to take

(16) p(r) = r(1 − αr)+,

where α is a small positive coefficient related to the hardness and the wear of
the contact surface.

The evolution of the bonding field is governed by the differential equation (9)
with given positive parameters γν , γτ and ǫa. Here and below in this paper, a
dot above a function represents the derivative with respect to the time variable.
We note that the adhesive process is irreversible and, indeed, once debonding
occurs bonding cannot be reestablished, since β̇ ≤ 0.

Next, (12) is the electrical contact condition on Γ3 which is the main novelty
of this work. It represents a regularized condition which may be obtained as
follows.

First, unlike previous papers on piezoelectric contact, we assume that the
foundation is electrically conductive and its potential is maintained at ϕ0.
When u̇ν < 0 then there are no free electrical charges on the surface and
the normal component of the electric displacement field vanishes. Thus,

(17) u̇ν < 0 ⇒ D · ν = 0.

When u̇ν = 0, the normal component of the electric displacement field or the
free charge is assumed to be proportional to the difference between the potential
of the foundation and the body’s surface potential, with k as the proportionality
factor. Thus,

(18) u̇ν = 0 ⇒ D · ν = k(ϕ− ϕ0).

We combine (17), (18) to obtain

(19) D · ν = kχ[0,∞)(u̇ν)(ϕ− ϕ0),

where χ[0,∞) is the characteristic function of the interval given [0,∞) that is

χ[0,∞)(r) =

{
0 if r < 0,
1 if r ≥ 0.

Condition (19) describes perfect electrical contact and is somewhat similar to
the Signorini contact condition. Both conditions may be over-idealizations in
many applications.

To make it more realistic, we regularize condition (19) and write it as (12)
in which kχ[0,∞) is replaced with ψ which is a regular function which will be
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described below, and φ is the truncation function

(20) φ(s) =






−Lφ if s < −Lφ,

s if − Lφ ≤ s ≤ Lφ,

Lφ if s > Lφ,

where Lφ is a large positive constant. We note that this truncation does not
pose any practical limitations on the applicability of the model, since M may
be arbitrarily large, higher than any possible peak voltage in the system, and
therefore in applications φ(ϕ − ϕ0) = ϕ− ϕ0.

The reasons for the regularization (12) of (19) are mathematical. First,
we need to avoid the discontinuity in the free electric charge when contact is
established and, therefore, we regularize the function kχ[0,∞) in (19) with a
Lipschitz continuous function ψδ0 . A possible choice is

(21) ψδ0(r) =






0 if r < −1/δ0,

krδ0 + k if − 1/δ0 ≤ r ≤ 0,

k r > 0,

where δ0 > 0 is a large parameter. This choice means that during the contact
process, the electrical conductivity increases continuously from−1/δ0 very close
to zero and reaches the value k, very quickly, when u̇ν is equal to zero. Secondly,
we need the term φ(ϕ − ϕ0) to control the boundedness of ϕ− ϕ0.

Note that when ψ ≡ 0 in (12) then

(22) D · ν = 0 on Γ3 × (0, T ),

which decouples the electrical and mechanical problems on the contact surface.
Condition (22) models the case when the obstacle is a perfect insulator and
was used in [4, 12, 22, 31, 32]. Condition (12), instead of (22), introduces
strong coupling between the mechanical and the electric boundary conditions
and leads to a new and nonstandard mathematical model.

Because of the friction condition (11), which is non-smooth, we do not expect
the problem to have, in general, any classical solutions. For this reason, we de-
rive in the next section a variational formulation of the problem and investigate
its solvability. Moreover, variational formulations are also starting points for
the construction of finite element algorithms for this type of problems. Con-
ditions (11) and (12) represent the electric boundary conditions. Finally, the
equations (13) and (14) are the initial conditions.

3. Variational formulations and preliminaries

In this section, we list the assumptions on the data and derive a variational
formulation for the contact problem. To this end we need to introduce some
notation and preliminary material.

Here and everywhere in this paper, i, j, k, l run from 1 to d, summation over
repeated indices is applied and the index that follows a comma represents the
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partial derivative with respect to the corresponding component of the spatial
variable, e.g., ui,j =

∂ui

∂xj
.

Everywhere below, we use the classical notation for Lp and Sobolev spaces
associated to Ω and Γ. Moreover, we use the notation H , H1 and H and H1

for the following spaces:

H = L2(Ω)d = {v = (vi) | vi ∈ L2(Ω)},

H1 = H1(Ω)d = {v = (vi) | vi ∈ H1(Ω)},

H = {τ = (τij) | τij = τji ∈ L2(Ω)},

H1 = {τ ∈ H | τij,j ∈ L2(Ω)}.

The spacesH , H1, H andH1 are real Hilbert spaces endowed with the canonical
inner products given by

(u,v)H =

∫

Ω

u · v dx, (u,v)H1 =

∫

Ω

u · v dx+

∫

Ω

∇u · ∇v dx,

(σ, τ)H =

∫

Ω

σ · τ dx, (σ, τ)H1 =

∫

Ω

σ · τ dx+

∫

Ω

Divσ ·Div τ dx,

and the associated norms ‖ · ‖H , ‖ · ‖H1 , ‖ · ‖H and ‖ · ‖H1 , respectively. Here
and below we use the notation

∇v = (vi,j), ε(v) = (εij(v)), εij(v) =
1

2
(vi,j + vj,i) ∀v ∈ H1,

Div τ = (τij,j) ∀ τ ∈ H1.

For every element v ∈ H1 we also write v for the trace of v on Γ and we
denote by vν and vτ the normal and tangential components of v on Γ given
by vν = v · ν, vτ = v − vνν.

Let now consider the closed subspace of H1 defined by

V = {v ∈ H1 | v = 0 on Γ1}.

Since meas (Γ1) > 0, the following Korn’s inequality holds:

(23) ‖ε(v)‖H ≥ cK ‖v‖H1 ∀v ∈ V,

where cK > 0 is a constant which depends only on Ω and Γ1. Over the space
V we consider the inner product given by

(24) (u,v)V = (ε(u), ε(v))H

and let ‖ · ‖V be the associated norm. It follows from Korn’s inequality (23)
that ‖ · ‖H1 and ‖ · ‖V are equivalent norms on V and, therefore, (V, ‖ · ‖V ) is
a real Hilbert space. Moreover, by the Sobolev trace theorem, (23) and (24),
there exists a constant c0 depending only on the domain Ω, Γ1 and Γ3 such
that

(25) ‖v‖L2(Γ3)d ≤ c0‖v‖V ∀v ∈ V.

Finally, for a real Banach space (X, ‖ · ‖X) we use the usual notation for the
spaces Lp(0, T ;X) and W k,p(0, T ;X) where 1 ≤ p ≤ ∞, k = 1, 2, . . . ; we also
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denote by C([0, T ];X) and C1([0, T ];X) the spaces of continuous and contin-
uously differentiable functions on [0, T ] with values in X , with the respective
norms

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X ,

‖x‖C1([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X + max
t∈[0,T ]

‖ẋ(t)‖X .

Recall that the dot represents the time derivative, respectively, where the dot
represents the time derivative.

We also introduce the following spaces.

W = {ψ ∈ H1(Ω) | ψ = 0 on Γa},

W = {D = (Di) | Di ∈ L2(Ω)} = L2(Ω)d,

W1 = {D = (Di) | Di ∈ L2(Ω), Di,i ∈ L2(Ω)}.

Since meas (Γa) > 0, the following Friedrichs-Poincaré inequality holds:

(26) ‖∇ψ‖H ≥ cF ‖ψ‖H1(Ω) ∀ψ ∈ W,

where cF > 0 is a constant which depends only on Ω and Γa and ∇ψ = (ψ,i ).
Over the space W , we consider the inner product given by

(ϕ, ψ)W =

∫

Ω

∇ϕ · ∇ψ dx

and let ‖ · ‖W be the associated norm. It follows from (26) that ‖ · ‖H1(Ω) and
‖ · ‖W are equivalent norms on W and therefore (W, ‖ · ‖W ) is a real Hilbert
space. Moreover, by the Sobolev trace theorem, there exists a constant c̃0,
depending only on Ω, Γa and Γ3, such that

(27) ‖ψ‖L2(Γ3) ≤ c̃0‖ψ‖W ∀ψ ∈W.

The space W1 is real Hilbert space with the inner product

(D,E)W1 =

∫

Ω

D ·E dx+

∫

Ω

divD · divE dx,

where div = (Di,i), and the associated norm ‖ · ‖W1 .

For every real Hilbert space X we use the classical notation for the spaces
Lp(0, T ;X) and W k,p(0, T ;X), 1 ≤ p ≤ ∞, k ≥ 1 and we also introduce the
set

Q = { θ ∈ L∞(0, T ;L2(Γ3)) | 0 ≤ θ(t) ≤ 1 ∀ t ∈ [0, T ], a.e. on Γ3}.

Finally, if X1 and X2 are two Hilbert spaces endowed with the inner products
(·, ·)X1 and (·, ·)X2 and the associated norms ‖ · ‖X1 and ‖ · ‖X2 , respectively,
we denote by X1 × X2 the product space together with the canonical inner
product (·, ·)X1×X2 and the associated norm ‖ · ‖X1×X2 .
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We now list the assumptions on the problem’s data. The viscosity operator

F and the elasticity operator G are assumed to satisfy the conditions:





(a) F : Ω× S
d → S

d.
(b) There exists LF > 0 such that

‖F(x, ξ1)−F(x, ξ2)‖ ≤ LF‖ξ1 − ξ2‖
∀ ξ1, ξ2 ∈ S

d, a.e. x ∈ Ω.
(c) There exists mF > 0 such that

(F(x, ξ1)− F(x, ξ2)) · (ξ1 − ξ2) ≥ mF‖ξ1 − ξ2‖
2

∀ ξ1, ξ2 ∈ S
d, a.e. x ∈ Ω.

(d) The mapping x 7→ F(x, ξ) is Lebesgue
measurable on Ω, for any ξ ∈ S

d.
(e) The mapping x 7→ F(x,0) belongs to H.

(28)






(a) G : Ω× S
d → S

d.
(b) There exists LG > 0 such that

‖G(x, ξ1)− G(x, ξ2)‖ ≤ LG‖ξ1 − ξ2‖
∀ ξ1, ξ2 ∈ S

d, a.e. x ∈ Ω.
(c) The mapping x 7→ G(x, ξ) is measurable on Ω,

for any ξ ∈ S
d.

(d) The mapping x 7→ G(x,0) belongs to H.

(29)

The piezoelectric tensor E and the electric permittivity tensor B satisfy





(a) E : Ω× S
d → R

d.
(b) E(x, τ ) = (eijk(x)τjk) ∀τ = (τij) ∈ S

d, a.e. x ∈ Ω.
(c) eijk = eikj ∈ L∞(Ω).

(30)






(a) β : Ω× R
d → R

d.
(b) β(x,E) = (βij(x)Ej) ∀E = (Ei) ∈ R

d, a.e. x ∈ Ω.
(c) βij = βji ∈ L∞(Ω).
(d) There exists mB > 0 such that βij(x)EiEj ≥ mβ‖E‖2

∀E = (Ei) ∈ R
d, a.e. x ∈ Ω.

(31)

In linearized electro viscoelasticity, the constitutive laws (2) and (3) read

σij = aijklεkl(u̇) + gijklεkl(u)− ekijϕ,k ,

Di = eijkεjk(u) + βijϕ,j ,

where aijkl, gijkl, βij and ekij are the components of the tensors F , G, β and E
respectively, and ϕ,j = ∂ϕ/∂xj . Clearly, assumption (28) is satisfied if all the
components aijkl belong to L

∞(Ω) and satisfy the usual properties of symmetry
and ellipticity:

aijkl = ajikl = aklij ,

and

aijklψijψkl ≥ m0 ‖ψ‖
2

for m0 > 0 and all symmetric tensors ψ. Assumption (29) is satisfied if gijkl
belong to L∞(Ω) and satisfy the same symmetry properties.
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A second example is provided by the nonlinear electro viscoelastic constitutive
law,

σ = Fε(u̇) +̟(ε(u)− PK(ε(u))− E∗E(ϕ),

Di = eijkεjk(u̇) + βijϕ,j .

Here F is a nonlinear fourth-order viscosity tensor that satisfies (28), ̟ is a
positive coefficient, K is a closed convex subset of Sd such that 0 ∈ K, and
PK : Sd → K denotes the projection operator. Since the projection operator is
nonexpansive, the elasticity operator G(x, ε) = α(ε − PKε) satisfies condition
(29).

The friction function p satisfies:

(32)






p : Γ3 × R → R+ verifies
(a) there exists Lp > 0 such that :

|p (x, r1)− p (x, r2)| ≤ Lp |r1−r2|
for every r1, r2 ∈ R, a.e. x ∈ Γ3;

(b) x 7→ p (x, r) is measurable on Γ3, for every r ∈ R;
(c) p (x, 0) = 0, a.e. x ∈ Γ3.

Using the continuity of the regularization operator R : H− 1
2 (Γ) → L2(Γ) and

the continuity of the normal trace mapping σ → σν : H1 → H− 1
2 (Γ), we

deduce the existence of a constant CR depending only on Ω, Γ1, Γ3 and R such
that

(33) ‖R(σν)‖L2(Γ) ≤ CR ‖σ‖H1
.

We note that (32) is satisfied in the case of function p given by (16).
The surface electrical conductivity function ψ satisfies:

(34)






(a) ψ : Γ3 × R
− → R+.

(b) ∃Lψ > 0 such that |ψ(x, u1)− ψ(x, u2)| ≤ Lψ|u1 − u2|
∀u1, u2 ∈ R, a.e. x ∈ Γ3.

(c) ∃Mψ > 0 such that |ψ(x, u)| ≤Mψ ∀u ∈ R, a.e. x ∈ Γ3.
(e) x 7→ ψ(x, u) is measurable onΓ3, for allu ∈ R.

An example of a conductivity function which satisfies condition (34) is given
by (21) in which case Mψ = k. Another example is provided by ψ ≡ 0, which
models the contact with an insulated foundation, as noted in Section 2. We
conclude that our results below are valid for the corresponding piezoelectric
contact models.

We also suppose that the body forces, surface tractions and surface free
charge densities have the regularity

(35) f0 ∈ W 1,∞(0, T ;H), f2 ∈ W 1,∞(0, T ;L2(Γ2)
d),

and the densities of electric charges satisfy

(36) q0 ∈W 1,∞(0, T ;L2(Ω)), q2 ∈ W 1,∞(0, T ;L2(Γb)).
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We assume that the electric conductivity coefficient and the potential of the
foundation satisfy

k ∈ L∞(Γ3), k ≥ 0, a.e. x ∈ Γ3,(37)

ϕ0 ∈ L2(Γ3).(38)

We define the function f : [0, T ] → V, q : [0, T ] →W and h : V ×W →W by

(39) (f(t),v)V =

∫

Ω

f0(t) · v dx +

∫

Γ2

f2(t) · v da,

(40) (q(t), ψ)W =

∫

Ω

q0(t)ψ dx−

∫

Γb

q2(t)ψ da,

(41) (h(u, ϕ), ψ)W =

∫

Γ3

ψ(uν)φL(ϕ− ϕ0)ψ da,

for all u,v ∈ V, ψ ∈ W and t ∈ [0, T ], and note that conditions (35) and (36)
imply that

(42) f ∈W 1,∞(0, T ;V ), q ∈W 1,∞(0, T ;W ).

The adhesion coefficients γν , γτ and the limit bound ǫa satisfy the conditions

(43) γν , γτ ∈ L∞(Γ3), ǫa ∈ L2(Γ3), γν , γτ , ǫa ≥ 0, a.e. on Γ3

while the friction coefficient µ is such that

(44) µ ∈ L∞(Γ3), µ(x) ≥ 0, a.e. on Γ3.

We denote by Uad the convex subset of admissible displacements fields given
by

(45) Uad = {v ∈ H1 | v = 0 on Γ1 , vν ≤ 0 on Γ3} ,

and the initial condition β0 and u0 satisfy

(46) β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1, a.e. on Γ3, u0 ∈ Uad.

We define the adhesion functional jad : L
2(Γ3)× V × V → R by

(47) jad(β,u,v) =

∫

Γ3

(
− γνβ

2Rν(uν)vν + γτβ
2Rτ (uτ ) · vτ

)
da,

the friction functional jfr : L
2(Γ3)×H1 × V × V → R by

(48) jfr(β,σ,u,v) =

∫

Γ3

µp(|R(σν)− γνβ
2Rν(uν)|) · |vτ | da.

By a standard procedure based on Green’s formula we can derive the following
variational formulation of the contact problem (1)–(14).

Problem PV . Find a displacement field u : [0, T ] → V , an electric potential

field ϕ : [0, T ] → W and a bonding field β : [0, T ] → L2(Γ3) such that u̇(t) ∈
Uad and

(Fε(u̇ (t)), ε(v)− ε(u̇(t))H + (Gε(u (t)), ε(v)− ε(u̇(t))H(49)
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+ (E∗∇ϕ (t) , ε(v)− ε(u̇(t))H + jad(β(t), u̇(t)(t),v − u̇(t))

+ jfr(σ(t), β(t), u̇(t),v)− jfr(σ(t), β(t), u̇(t), u̇(t))

≥ (f(t),v − u̇(t))V , ∀v ∈ Uad, ∀t ∈ [0, T ],

(B∇ϕ(t),∇ψ)H − (Eε(u̇(t),∇ψ)H + (h(u̇(t), ϕ), ψ)W(50)

= (q(t), ψ)W , ∀ψ ∈ W, ∀t ∈ [0, T ],

β̇(t) = −(β(t) (γνRν(u̇ν(t))
2 + γτ‖Rτ (u̇τ (t))‖

2)− ǫa)+ , a.e t ∈ (0, T ),(51)

u(0) = u0,(52)

β(0) = β0.(53)

In the rest of this section, we derive some inequalities involving the function-
als jad, jfr and h which will be used in the following sections. Below in this
section β, β1, β2 denote elements of L2(Γ3) such that 0 ≤ β, β1, β2 ≤ 1 a.e.
on Γ3, u1, u2,v1,v2, u and v represent elements of V ; ϕ1, ϕ2 denote elements
of W, σ, σ1, σ2 represent elements of H1 and C is a generic positive constants
which may depend on Ω, Γ1, Γ3, p, γν , γτ , R, L and Lp, whose value may
change from place to place. For the sake of simplicity, we suppress in what
follows the explicit dependence on various functions on x ∈ Ω ∪ Γ3.

First, we remark that the jad is linear with respect to the last argument and
therefore

(54) jad(β,u,−v) = −jad(β,u,v).

Next, using (47) and the inequalities |Rν(u1ν)| ≤ Lν, ‖Rτ (uτ )‖ ≤ Lτ , |β1| ≤
1, |β2| ≤ 1, for the previous inequality, we deduce that

jad(β1,u1,u2 − u1) + jad(β2,u2,u1 − u2) ≤ C

∫

Γ3

|β1 − β2| ‖u1 − u2‖ da,

then, we combine this inequality with (25), to obtain

(55) jad(β1,u1,u2−u1)+jad(β2,u2,u1−u2) ≤ C‖β1−β2‖L2(Γ3)‖u1−u2‖V .

Next, we choose β1 = β2 = β in (55) to find

(56) jad(β,u1,u2 − u1) + jad(β,u2,u1 − u2) ≤ 0.

Similar manipulations, based on the Lipschitz continuity of operators Rν , Rτ
show that

(57) |jad(β1,u1,v)− jad(β2,u2,v)| ≤ C(‖β1 −β2‖L2(Γ3)+ ‖u1 −u2‖V )‖v‖V .

Also, we take u1 = v and u2 = 0 in (56), then we use the equalities Rν(0) = 0,
Rτ (0) = 0 and (55) to obtain

(58) jad(β,v,v) ≥ 0.

Next, we use (48), (32)(a), keeping in mind (25), propriety of a normal regu-
larization operator and the inequalities |Rν(uν)| ≤ Lν , |β1| ≤ 1, |β2| ≤ 1 and
the continuity of the operator R we obtain

jfr(β1,σ1,u1,v2)− jfr(β1,σ1,u1,v1)(59)
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+ jfr(β2,σ2,u2,v1 − jfr(β2,σ2,u2,v2))

≤ ‖µ‖L∞(Γ3)Lpc0(CR||u2 − u1‖V + Lνc0‖β2 − β1‖L2(Γ3)

+ Lνc0‖σ2−σ1||H1)||v2 − v1‖V .

Now, by using (32)(a) and (44), it follows that the integral in (48) is well
defined. Moreover, we have

jfr(β,σ,u,v)(60)

≤ ‖µ‖L∞(Γ3)Lpc0(Lνc0||u‖V ‖+ (CR‖σ||H1 + Lνc0‖β‖L2(Γ3)))‖v‖V .

Next, we use the bounds |ψ(v)| ≤ Mψ, |φ(ϕ1 − ϕ0)| ≤ Lφ, the Lipschitz
continuity of the functions ψ and φ, and inequality (27) to obtain

h(u1, ϕ1, ϕ1)W − h(u1, ϕ1, ϕ2)W + h(u2, ϕ2, ϕ1)W − h(u2, ϕ2, ϕ2)W(61)

≤ Mψ c
2
0‖ϕ2 − ϕ1‖

2
W + Lψ Lφc0c̃0‖u1 − u2‖V ‖ϕ2 − ϕ1‖W .

The inequalities (55)–(60) combined with equalities (61) will be used in various
places in the rest of the paper.

Our main existence and uniqueness result that we state now and prove in
the next section is the following.

Theorem 3.1. Assume that (28)–(31), (32)–(36) and (43)–(46) hold. Then

Problem PV has a unique solution (u, ϕ, β). Moreover, the solutions belong to

the following spaces:

u ∈ W 1,∞(0, T ;V ),(62)

ϕ ∈ C([0, T ];W ),(63)

β ∈ W 1,∞(0, T ;L2(Γ3)) ∩ Q.(64)

A “quintuple” of functions (u, σ, ϕ, D, β) which satisfy (1), (2), (49)–(53) is
called a weak solution of the contact problem PV . We conclude by Theorem 3.1
that, under the stated assumptions, Problem PV has a unique weak solution.
To precise the regularity of the weak solution we note that the constitutive
relations (1) and (2), the assumptions (28), (31) and the regularities (62)–
(64) show that σ∈ W 1,∞(0, T ;H), D ∈ W 1,∞(0, T ;W). We choose as a test
function v = u̇(t) ± z where z ∈ C∞

0 (Ω)d in (49) and ζ ∈ C∞
0 (Ω) in (50) and

use the definitions of f, q, functionals jad and jfr to obtain

Divσ(t) + f0(t) = 0, divD(t) + q0(t) = 0

for all t ∈ [0, T ]. It follows now from (42) that Divσ(t) ∈ W 1,∞(0, T ;H) and
divD ∈ W 1,∞(0, T ;L2(Ω)) and thus

σ ∈ C([0, T ];H1),(65)

D ∈ C([0, T ];W1).(66)

We conclude that the weak solution (u,σ, ϕ,D, β) of the piezoelectric contact
problem PV has the regularity (62)–(64), (65) and (66).
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4. Existence and uniqueness results

The proof of Theorem 3.1 is carried out in several steps and is based on the
following abstract result for evolutionary variational inequalities.

Let X be a real Hilbert space with the inner product (·, ·)X and the associ-
ated norm ‖ · ‖X . Let Y ⊂ X a non-empty closed convex subset of X. Consider
the problem of finding u(t) ∈ Y such that

(Au(t), v − u(t))X + j(u(t), v)− j(u(t), u(t)) ≥ (f(t), v − u(t))X(67)

∀v ∈ Y, t ∈ [0, T ].

To study problem (67) we need the following assumptions: The operator A :
Y → X is strongly monotone and Lipschitz continuous, i.e.,

(68)






(a) There exists mA > 0 such that
(Au1 −Au2, u1 − u2)X ≥ mA‖u1 − u2‖

2
X ∀u1, u2 ∈ Y.

(b) There exists LF > 0 such that
‖Au1 −Au2‖X ≤ LA‖u1 − u2‖X ∀u1, u2 ∈ Y.

The functional j : Y × Y → R satisfies:

(69)






(a) j(u, ·) is convex and l.s.c. on X for all u ∈ X.
(b) There exists m > 0 such that

j(u1, v2)− j(u1, v1) + j(u2, v1)− j(u2, v2)
≤ m ‖u1 − u2‖X ‖v1 − v2‖X ∀u1, u2, v1, v2 ∈ X.

Finally, we assume that

(70) f ∈ C([0, T ];X),

The following existence, uniqueness and regularity result may be found in
[8].

Theorem 4.1. Let (68)–(69) and (70) hold. Then, if mA > m, there exists

a unique solution u to the inequality (67). Moreover, the solution satisfies

u ∈ C([0, T ];X).

We turn now to proof of Theorem 3.1. To this end, we assume in the
following that (28)–(38) hold. Let L denotes the closed set of the space
C(0, T ;L2(Γ3)) defined by

(71) L =
{
β ∈ C([0, T ];L2(Γ3)) ∩Q | β(0) = β0

}
.

Let η ∈ C([0, T ];H), β ∈ L and g ∈ C([0, T ];H1) are know, and in the first step
consider the following intermediate mechanical problem in which η = Gε(u (t))
and v(t) = u̇ (t).

Problem Pηβg. Find a displacement field vηβg: [0, T ] → V , an electric poten-

tial field ϕ
ηβg

: [0, T ] →W such that

vηβg(t) ∈ Uad, (F(ε(vηβg(t))), ε(w)− ε(vηβg(t)))H + (η, ε(w − vηβg(t)))H

(72)
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+ (E∗∇ϕηβg(t), ε(w − vηβg(t)))H + jad(β(t),vηβg(t),w − vηβg(t))

+ jfr(g(t), β(t),vηβg(t),w)− jfr(g(t), β(t),vηβg(t),vηβg(t))

≥ (f(t),w − vηβg(t))V , ∀w ∈ Uad,

(B∇ϕηβg(t),∇ψ)H − (Eε(vηβg(t)),∇ψ)H + (h(vηβg(t), ϕ), ψ)W(73)

= (q(t), ψ)W ∀ψ ∈ W.

In order to solve Problem Pηβg we consider the product space X = V ×W
endowed with the inner product

(74) (x, y)X = (v,w)V + (ϕ, ψ)W ∀x = (v, ϕ), y = (w, ψ) ∈ X

and the associated norm || · ||X . We also introduce the set K ⊂ X defined by

(75) K = Uad ×W.

We defined the operatorAηβg(t) : X×X → R, the function jgβ(x, y) : X×X →
R, the elements fη(t) ∈ V and fη(t) ∈ X by qualities

(Aηβg(t)xηβg, y)X = (F(ε(vηβg(t))), ε(w))H + (B∇ϕηβg(t),∇ψ)H(76)

+(E∗∇ϕηβg(t), ε(w))H − (Eε(vηβg(t)),∇ψ)H

+jad(β(t),vηβg(t),w),

∀xηβg = (vηβg(t), ϕηβg(t)), y = (w, ψ) ∈ K, t ∈ [0, T ],

jηgβ(xηβg(t), y)=jfr(g(t), β(t),vηβg(t),w))+(h(vηβg(t), ϕηβg(t)), ψ)W ,(77)

∀xηβg = (vηβg(t), ϕηβg(t)), y = (w, ψ) ∈ K,

(fη(t),w)V = (f(t),w)V − (η(t), ε(w))H ∀ w ∈ Uad, ∀t ∈ [0, T ],(78)

fη(t)=(fη(t), q(t)).(79)

We start with the following equivalence result.

Lemma 4.2. The couple xηβg = (vηβg(t), ϕηβg) : [0, T ] → V ×W is a solution

to Problem Pηβg if and only if xηβg ∈ C([0, T ];K) and satisfies

xηβg(t) ∈ K, (Aηβg(t)xηβg(t), y − xηβg(t))X + jηβg(xηβg(t), y)(80)

−jηβg(xηβg(t), xηβg(t)) ≥ (fη(t), y − xηβg(t))X ∀y ∈ K, t ∈ [0, T ],

Proof. Let xηβg = (vηβg, ϕηβg) : [0, T ] → K be a solution to Problem Pηβg.
Let y = (w, ψ) ∈ K and let t ∈ [0, T ]. We use the test function ψ − ϕηβg(t)
in (73), add the corresponding inequality to (72), and use (74)–(78) to obtain
(80). Conversely, assume that xηβg = (vηβg, ϕηβg) : [0, T ] → K satisfies (80)
and let t ∈ [0, T ]. For any w ∈ Uad, we take y = (w, ϕηβg(t)) in (80) to obtain
(72). Then, for any ψ ∈ W , we take successively y = (vηβg, ϕηβg(t) + ψ) and
y = (vηβg, ϕηβg(t)− ψ) in (80) to obtain (73). �

We use now Lemma 4.2 to obtain the following existence and uniqueness
result.
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Lemma 4.3. There exists µ0 > 0 depending only on Ω,Γ1,Γ3,F , B and p such

that, if ‖µ‖L∞(Γ3) < µ0, Problem Pηβg has a unique solution (vηβg, ϕηβg) ∈
C([0, T ];Uad ×W ).

Proof. We apply Theorem 4.1 where X = V ×W and Y = K = Uad ×W. Let
t ∈ [0, T ], we use (28)–(31), (54), and (58) to see that Aηβg(t) is a strongly
monotone Lipschitz continuous operator on X and it satisfies

(Aη(t)xηβ1g1(t)− Aηβg(t)xηβ2g2(t), xηβ1g1(t)− xηβ2g2(t))X

≥ min(mF ,mB)||xηβ1g1(t)− xηβ2g2(t)||
2
X .(81)

Using (60), (61) and (77), we can easily check that the functional jηβg sat-
isfies

jηβ1g1(xηβ1g1 , xηβ1g1)− jηβ1g1(xηβ1g1 , xηβ2g2)

+ jηβ2g2(xηβ2g2 , xη1β1g1)− jηβ2g2(xηβ2g2 , xη2β2g2)

≤ ‖µ‖L∞(Γ3)Lpc0(CR||xηβ2g2 − xη1β1g1‖X

+ Lνc0‖β2 − β1‖L2(Γ3))||xηβ2g2 − xηβ1g1‖X

+ (‖µ‖L∞(Γ3)Lpc
2
0Lν +Mψ c̃

2
0 + Lψ Lφc0c̃0)‖xηβ2g2 − xηβ1g1 ||X(82)

is a continuous seminorm on X and moreover, it satisfies condition (69) on X
when β1 = β2 and g1 = g2.

Let

µ0 =
min(mF ,mB)

c20LpLν +Mψ c̃20 + LψLφc0c̃0
,

wheremF , mB, c0, Lp, Lν, Mψ, c̃0, Lψ and Lφ are given in (28), (29), (25), (32),
(15), (34), (27) and (20), respectively. We note that µ0 depends on Ω,Γ1,Γ3,F ,
B, Rν , ψ, φ and p. Assume that ‖µ‖L∞(Γ3) < µ0, then

(83) ‖µ‖L∞(Γ3)c
2
0LpLν +Mψ c̃

2
0 + LψLφc0c̃0 < min(mF ,mB),

and note that this smallness assumption involves of the geometry, the electrical,
and on the mechanical data of problem.

Using (81), (82) and (83), the existence and uniqueness part in Lemma 4.3
is now a consequence of Lemma 4.2 and Theorem 4.1.

For t1, t2 ∈ [0, T ], an argument based on (28), (81), the inequalities involving
the functionals jad, h and jfr presented at the end of Section 3, (82) and (83)
shows that

||xηβg(t2)− xηβg(t1)||X

≤
‖µ‖L∞(Γ3)Lpc0(CR||g(t2)− g(t1)‖V + Lνc0‖β(t2)− β(t1)‖L2(Γ3))

min(mF ,mB)− c20LpLν +Mψc̃20 + LψLφc0c̃0

+
1

min(mF ,mB)− c20LpLν +Mψ c̃20 + LψLφc0c̃0
||fη(t2)− fη(t1)||X .(84)

The last inequality implies that

||vηβg(t2)− vηβg(t1)||V
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≤
‖µ‖L∞(Γ3)Lpc0(CR||g(t2)− g(t1)‖V + Lνc0‖β(t2)− β(t1)‖L2(Γ3))

min(mF ,mB)− c20LpLν +Mψ c̃20 + LψLφc0c̃0

+
1

min(mF ,mB)− c20LpLν +Mψ c̃20 + LψLφc0c̃0
||fη(t2)− fη(t1)||X(85)

and

||ϕηβg(t2)− ϕηβg(t1)||V

≤
‖µ‖L∞(Γ3)Lpc0(CR||g(t2)− g(t1)‖V + Lνc0‖β(t2)− β(t1)‖L2(Γ3))

min(mF ,mB)− c20LpLν +Mψc̃20 + LψLφc0c̃0

+
1

min(mF ,mB)− c20LpLν +Mψ c̃20 + LψLφc0c̃0
||fη(t2)− fη(t1)||X .(86)

Keeping in mind that fη ∈ W 1,∞(0, T ;V ), q ∈ W 1,∞(0, T ;W ) and recall that
η ∈ C([0, T ];H), we deduce from (79) that fη ∈ C([0, T ];X). Knowing that
β ∈ L and g ∈ C([0, T ];H1), it follows now from (84) that the mapping t →
xηβg = (vηβg, ϕηβg) : [0, T ] → X is continuous, this implies that (uηβg, ϕηβg) ∈
W 1,∞(0, T ;V )× ∈ C([0, T ];W ).

We assume in what follows that ‖µ‖L∞(Γ3) < µ0 and therefore (83) is valid.
In the next step, we use the displacement field vηβg obtained in Lemma 4.3,
denote by vηβgν , vηβgτ its normal and tangential components, and we consider
the following initial value problem. �

Problem Pθ
ηβg. Find a bonding field θηβg: [0, T ] → L2(Γ3) such that

θ̇ηβg(t) = −
(
θηβg(t)

(
γνRν(vηβgν(t))

2 + γτ‖Rτ (vηβgτ (t))‖
2
)
− ǫa

)

+
(87)

a.e. t ∈ (0, T ),

θηβg(0) = β0.(88)

We obtain the following result.

Lemma 4.4. There exists a unique solution to Problem Pθηβg and it satisfies

θηβg∈ W 1,∞(0, T, L2(Γ3)) ∩ Q

Proof. Consider the mapping Fηβg : [0, T ]× L2(Γ3) → L2(Γ3) defined by

(89) Fηβg(t, θ) = −(θ(t)(γνRν((vηβg)γ(t))
2 + γτ‖Rτ ((vηβg)τ (t))‖

2)− ǫa)+

for all t ∈ [0, T ] and θ ∈ L2(Γ3). It follows from the properties of the trun-
cation operators Rν and Rτ that Fβ is Lipschitz continuous with respect to
the second argument, uniformly in time. Moreover, for any θ ∈ L2(Γ3), the
mapping t 7→ Fηβg(t, θ) belongs to L∞(0, T ;L2(Γ3)). Using now a version
of Cauchy-Lipschitz theorem, we obtain the existence of a unique function
θηβg ∈ W 1,∞(0, T, L2(Γ3)) which solves (87), (88). We note that the restric-
tion 0 ≤ β ≤ 1 is implicitly included in the variational problem Pv. Indeed,
(50) and (52) guarantee that β(t) ≤ β0 and, therefore, assumption (46) shows
that β(t) ≤ 1 for t ≥ 0, a.e. on Γ3. On the other hand, if β(t0) = 0 at t = t0,
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then it follows from (50) and (52) that β̇(t) = 0 for all t ≥ t0 and therefore,
β(t) = 0 for all t ≥ 0, a.e. on Γ3. We conclude that 0 ≤ β(t) ≤ 1 for all
t ∈ [0, T ], a.e. on Γ3. Therefore, from the definition of the set Q, we find that
θηβg ∈ Q, which concludes the proof of lemma. �

It follows from Lemma 4.4 that for all η ∈ C([0, T ];H), β ∈ L and g ∈
C([0, T ];H1), the solution θηβg of Problem Pθηβg belongs to L, see (71).

We denote now by σηβg the tensor given by

(90) σηβg = Fε(vηβg) + E∗∇(ϕηβg),

where (vηβg, ϕηβg) is the solution of Problem Pηβg. From (28), (30) and Lemma
4.3, its follows that σηβg ∈ C([0, T ];H1). Therefore, we may consider the
operator Λη : L× C([0, T ];H1) → L× C([0, T ];H1) given by

(91) Λη(β, g) = (θηβg,σηβg).

The third step consists in the following result.

Lemma 4.5. There exists a unique element (β∗, g∗) ∈ L × C([0, T ];H1) such
that

Λη(β
∗, g∗) = (β∗, g∗).

Proof. Suppose that (βi, gi) are two couples of functions in L × C([0, T ];H1)
and denote by (ui, ϕi), θi the functions obtained in Lemmas 4.3 and 4.4, re-
spectively, for (β, g)=(βi, gi), i = 1, 2. Let t ∈ [0, T ]. We use arguments similar
to those used in the proof of (84) to deduce that

||xηβ1g1(t)− xηβ2g2(t)||X ≤
‖µ‖L∞(Γ3)Lpc0CR||g2(t)− g1(t)‖H1

min(mF ,mB)− c20LpLν +Mψ c̃20 + LψLφc0c̃0

+
‖µ‖L∞(Γ3)Lpc0Lνc0‖||β2(t)− β1(t)‖L2(Γ3)

min(mF ,mB)− c20LpLν +Mψc̃20 + LψLφc0c̃0
(92)

which implies

||vηβ1g1(t)− vη2β2g2(t)||V ≤
‖µ‖L∞(Γ3)Lpc0CR||g2(t)− g1(t)‖H1

min(mF ,mB)− c20LpLν +Mψc̃20 + LψLφc0c̃0

+
‖µ‖L∞(Γ3)Lpc0Lνc0‖||β2(t)− β1(t)‖L2(Γ3)

min(mF ,mB)− c20LpLν +Mψ c̃20 + LψLφc0c̃0
.(93)

On the other hand, it follows from (87) and (88) that
(94)

θηβigi(t) = β0−

∫ t

0

(θηβigi(s)(γνRν(vηβigiν (s))
2+γτ‖Rτ (vηβigiτ (s))‖

2)−ǫa)+ds

and then

||θηβ2g2(t)− θηβ1g1(t)||L2(Γ3)

(95)



180 N. CHOUGUI, S. DRABLA, AND N. HEMICI

≤ c
( ∫ t

0

||θηβ2g2(s)Rν(vηβ2g2ν(s))
2 − θηβ1g1(s)Rν(vηβ1g1ν(s))

2||L2(Γ3)ds

+

∫ t

0

||θηβ2g2(s)||Rτ (vηβ2g2τ (s))
||2 − θηβ1g1(s)||Rτ (vηβ1g1τ (s))||

2||L2(Γ3)ds
)
.

Using the definition of Rν and Rτ and writing , θηβ1g1 = θηβ1g1 −θηβ2g2 +θηβ2g2

we get

||θηβ2g2(t)− θηβ1g1(t)||L2(Γ3) ≤ c
(∫ t

0

||θηβ2g2(s)− θηβ1g1(s)||L2(Γ3)ds

+

∫ t

0

||vηβ1g1(s)− vηβ2g2(s)||L2(Γ3)ds
)
.(96)

By Gronwall’s inequality, it follows that

(97) ||θηβ2g2(t)− θηβ1g1(t)||L2(Γ3) ≤ CGr

∫ t

0

||vηβ1g1(s)− vηβ2g2(s)||L2(Γ3)ds,

where CGr is the Gronwall’s constant.
Using (25), we obtain

(98) ||θηβ2g2(t)− θηβ1g1(t)||L2(Γ3) ≤ CGrc0

∫ t

0

||vηβ1g1(s)− vηβ2g2(s)||V ds.

Let

N =
CGrc

2
0‖µ‖L∞(Γ3)Lpmax(CR, Lνc0)max(LF , cE c̃0)

min(mF ,mB)− c20LpLν +Mψ c̃20 + LψLφc0c̃0
.

We now combine (93) and (98) to see that

(99)

||θηβ2g2(t)− θηβ1g1(t)||L2(Γ3)

≤ N

∫ t

0

(||g2(s)− g1(s)‖H1 + ||β2(s)− β1(s)‖L2(Γ3))ds.

Using now (28), (30) and (90) (92) it is easy to see that

(100) ||σηβ1g1(t)−σηβ2g2(t)||H ≤ N(||β2(t)−β1(t)||L2(Γ3)+ ||g2(t)−g1(t)||H1),

where cE is a positive constant which depends on the piezoelectric tensor E .
From (91), (99) and the last inequality, it results that

||Λη(β1, g1)(t) − Λη(β2, g2)(t)||L2(Γ3)×H1

≤ N ||(β1, g1)(t)− (β2, g2)(t)||L2(Γ3)×H1

+ c

∫ t

0

||(β1, g1)(s)− (β2, g2)(s)||L2(Γ3)×H1
ds.(101)

Using the following notations

I0(t) = ||(β1, g1)(t) − (β2, g2)(t)||L2(Γ3)×H1
,

(102)
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I1(t) =

∫ t

0

||(β1, g1)(t) − (β2, g2)(t)||L2(Γ3)×H1
ds,

Ik(t) =

∫ t

0

∫ sk−1

0

· · ·

∫ s1

0

||(β1, g1)(t) − (β2, g2)(t)||L2(Γ3)×H1
drds1 · · · dsk−1,

∀k ≥ 2,

and denoting now by Λpη the powers of operator Λη, (101) and (102) imply by
recurrence that

∥∥Λpη(β1, g1)(t) − Λpη(β2, g2)(t)
∥∥
L2(Γ3)×H1

≤ (

p∑

k=0

Ckp
Np−kMpT p

k!
) ‖(β1, g1)(t)− (β2, g2)(t)‖L2(Γ3)×H1

(103)

≤
(Np+MT )

p

p!
‖(β1, g1)(t)− (β2, g2)(t)‖L2(Γ3)×H1

.(104)

Using the Stirling’s formula, we obtain under the condition N ≤ 1
e
that

lim
p→∞

(Np+MT )
p

p!
= 0,

which shows that for p sufficiently large Λpη : L×C([0, T ];H1)→ L×C([0, T ];H1)
is a contraction. Then, we conclude by using the Banach fixed point theo-
rem that Λη has a unique fixed point (β∗, g∗) ∈ L × C([0, T ];H1) such that
Λη(β

∗, g∗) = (β∗, g∗). Hence, from (91) it results for all t ∈ [0, T ],

(105) (β∗, g∗)(t) = (θηβ∗g∗(t), σηβ∗g∗(t)). �

From (29) and Lemma 4.3, its follows that Gε(uηβ∗g∗ (t)) ∈ C([0, T ];H1).
We now consider the operator Λ : C([0, T ];H) → C([0, T ];H) defined by

(106) Λη(t) = Gε(uηβ∗g∗ (t)) ∀η ∈ C([0, T ];H), t ∈ [0, T ],

where (β∗, g∗) is a fixed point of Λη and uηβ∗g∗ = u0 +
∫ t
0
vηβ∗g∗(s)ds.

We show that Λ has a unique fixed point.

Lemma 4.6. There exists a unique η∗ ∈ C([0, T ];H) such that Λη∗ = η∗.

Proof. Let η1, η2 ∈ C([0, T ];H), the fixed point (β∗, g∗) of the operator
Λη(β

∗, g∗) and denote by vi the function vηiβ∗g∗ obtained in Lemma 4.3 and
by ui the function uηiβ∗g∗ for i = 1, 2. Let t ∈ [0, T ]. Using (106) and (29) we
obtain

(107) ‖Λη1(t)− Λη2(t)‖H ≤ LG ‖u1(t)− u2(t)‖V .

We use arguments similar to those used in the proof of (84) to deduce that for
β1 = β2 = β∗ and g1 = g2 = g∗

(108) ‖v1(t)− v2(t)‖V ≤
‖µ‖L∞(Γ3)Lpc0||fη1(t)− fη2(t)||V

min(mF ,mB)− c20LpLν +Mψ c̃20 + LψLφc0c̃0
,
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and using this inequality in (79), its easy to obtain

(109) ||fη1(t)− fη2(t)||V ≤ c‖η1(t)− η2(t)‖H.

Combining (107)–(109) leads to

‖Λη1(t)− Λη2(t)‖H ≤
LG‖µ‖L∞(Γ3)Lpc0

∫ t
0
‖η1(s)− η2(s)‖Hds

min(mF ,mB)− c20LpLν +Mψ c̃20 + LψLφc0c̃0
.

Reiterating this inequality n times results, it yields

‖Λnη1 − Λnη2‖C([0,T ];H) ≤
cn

n!
‖η1 − η2‖C([0,T ];H).

This inequality shows that for a sufficiently large n the operator Λn is a con-
traction on the Banach space C([0, T ];H) and, therefore, there exists a unique
element η∗ ∈ C([0, T ];H) such that Λη∗ = η∗. �

Now, we have all the ingredients to provide the proof of Theorem 3.1.

Proof of Theorem 3.2. Existence. Let η∗ ∈ C([0, T ];H) and (β∗, g∗) ∈ L ×
C([0, T ];H1) are the fixed points of Λ and Λη, respectively. Let (v

∗, ϕ∗) be the
solution of Problem Pηβg for η = η∗ and (β, g) = (β∗, g∗), that is, v∗ = uη̃∗β∗g∗

and ϕ∗ = ϕη̃∗β∗g∗ . Since θη̃∗β∗g∗ = β∗, we conclude by (72), (73), (87), (88)
and the fact that u̇∗ = v∗ that (u∗, ϕ∗, β∗) is a solution of Problem PV ,
and, moreover, β∗ satisfies the regularity (64). Also, since η ∈ C([0, T ];H),
fη∗ ∈ C([0, T ];X), by (42) and (78) it is easy to see that the function fη defined
by (79) satisfies . Inequality (85), (86) imply that the function x∗ = (v∗, ϕ∗) :
[0, T ] → X is Lipschitz continuous; therefore, x∗ belongs to C([0, T ];X), which
shows that the functions u∗ and ϕ∗ have the regularity expressed in (62), (63).

Uniqueness. The uniqueness of the solution is a consequence of the unique-
ness of the fixed point of operator Λ and Λη defined by (91) and (106), respec-
tively. Indeed, let (u, ϕ, β) be a another solution of Problem PV which satisfies
(62)–(64).

We denote by η ∈ C([0, T ];H1) and (β, g) ∈ L×C([0, T ];H1) the functions
defined by

β̇(t) = −(β(t) (γνRν(u̇ν(t))
2 + γτ‖Rτ (u̇τ (t))‖

2)− ǫa)+ a.e. t ∈ (0, T ),(110)

β(0) = β0,(111)

g(t) = Fε(u̇(t)) + E∗∇(ϕ(t)),(112)

η(t) = Gε(u (t)).(113)

It follows from (72), (73) that (u̇, ϕ) is a solution to Problem Pηβg and, since
by Lemma 4.3 this problem has a unique solution denoted by (u̇ηβg, ϕηβg), we
obtain

u̇ = u̇ηβg,(114)

ϕ = ϕηβg.(115)
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Then, we replace u̇ = u̇ηβg in (51) and use the initial condition (53) to see that
β is a solution to Problem Pθηβg. Since by Lemma 4.4 this last problem has a
unique solution denoted by θηβg, we find

(116) β = θηβg.

We use now (91), (106), (116) (114), (112), (115), and Lemma 4.5 that

(117) (β, g) = (β∗, g∗).

We use now (106), (114) and Lemma 4.6 that

(118) η = η∗.

The uniqueness part of the theorem is now a consequence of (114), (115), (117)
and the last inequality. �

5. Conclusions

We presented a model for the quasistatic process of frictional contact be-
tween a deformable body made of a piezoelectric material, more precisely, an
electro-viscoelastic material, and an electrically conductive rigid foundation.
The contact and friction are modelled by Signorini’s conditions and a non local
Coulomb’s friction law in which the adhesion of contact surfaces is taken into
account.

The problem was set as a variational inequality for the displacements, a vari-
ational equality for the electric potential and a first order differential equation
for the adhesion. The existence of the unique weak solution for the problem
was established by using arguments from the theory of evolutionary variational
inequalities involving nonlinear strongly monotone Lipschitz continuous opera-
tors, and a fixed-point theorem. It was obtained under a smallness assumption
which involves the mechanical and electric data of the problem. This work
opens the way to study further problems with other conditions of contact.
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