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ON IDEMPOTENTS IN RELATION WITH REGULARITY

Juncheol Han, Yang Lee, Sangwon Park, Hyo Jin Sung, and Sang Jo Yun

Abstract. We make a study of two generalizations of regular rings, con-
centrating our attention on the structure of idempotents. A ring R is said
to be right attaching-idempotent if for a ∈ R there exists 0 6= b ∈ R such
that ab is an idempotent. Next R is said to be generalized regular if for
0 6= a ∈ R there exist nonzero b ∈ R such that ab is a nonzero idempo-
tent. It is first checked that generalized regular is left-right symmetric but
right attaching-idempotent is not. The generalized regularity is shown to
be a Morita invariant property. More structural properties of these two
concepts are also investigated.

Throughout this paper all rings are associative with identity unless otherwise
specified. Let R be a ring. X(R) denotes the set of all nonzero nonunits in
R, and G(R) denotes the group of all units in R. Let Cr(R) (resp., Cl(R))
denote the set of all right (resp. left) regular elements in R. J(R), N∗(R),
and N∗(R) denote the Jacobson radical, prime radical, and upper nilradical
(i.e., the sum of all nil ideals) of R, respectively. N(R) denotes the set of all
nilpotent elements in R. |S | denotes the cardinality of a subset S of R. Denote
the n by n full (resp., upper triangular) matrix ring over R by Matn(R) (resp.,
Un(R)) and use eij for the matrix with (i, j)-entry 1 and elsewhere 0. Z (Zn)
denotes the ring of integers (modulo n). Use Q to denote the field of rational
numbers. R[x] (R[[x]]) denotes the polynomial ring (power series ring) with an
indeterminate x over R.

∏
(⊕) denotes the direct product (sum) of rings.

A ring R (possibly without identity) is usually called reduced if N(R) = 0.
A ring (possibly without identity) is usually called Abelian if every idempotent
is central. It is easily checked that reduced rings are Abelian.

A ring R (possibly without identity) is usually called von Neumann regular

(simply, regular) (resp., unit-regular) if for every x ∈ R there exists y ∈ R
(resp., u ∈ G(R)) such that xyx = x (resp. xux = x) in [3]. It is shown that
R is regular if and only if every principal right (left) ideal of R is generated by
an idempotent in [3, Theorem 1.1].
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1. Right attaching-idempotent rings

A ring R will be called right (resp., left) attaching-idempotent if for a ∈ R
there exists 0 6= b ∈ R (resp., 0 6= c ∈ R) such that ab (resp., ca) is an
idempotent. R will be called attaching-idempotent if it is both left and right
attaching-idempotent.

We first observe that the attaching-idempotent property is not left-right
symmetric by the following.

Example 1.1. (1) Let R =
(

Q Q[x]

0 Q[x]

)
be the subring of U2(Q[x]). Let 0 6= a =

(aij) ∈ R. If a11 = 0, then ae11 = 0. If a11 6= 0, then
(
a11 a12
0 a22

)(
a−1

11
0

0 0

)
= e11.

Thus R is a right attaching-idempotent ring.
Next we claim that R is not left attaching-idempotent. Consider the element(

0 x
0 x2

)
in R, and assume on the contrary that ( s t

0 u )
(
0 x
0 x2

)
is an idempotent

for ( s t
0 u ) ∈ R. Then

(
0 sx+tx2

0 ux2

)2

=
(

0 sx+tx2

0 ux2

)
. So we must have sx+ tx2 = 0

and u2x4 = ux2, yielding u = 0. Next we get s = t = 0 since the degree of
sx is 1 and the degree of tx2 is ≥ 2 if s, t are both nonzero, a contradiction.
Therefore R is not left attaching-idempotent.

(2) Let S =
(

Q[x] Q[x]

0 Q

)
be the subring of U2(Q[x]). Then S is not right

attaching-idempotent but left attaching-idempotent by a similar computation.

In the following we see basic properties of left or right attaching-idempotent
rings.

Lemma 1.2. (1) The class of right attaching-idempotent rings is closed under

homomorphic images and direct products.

(2) If every element of a ring R is either a unit or a zero-divisor, then R is

attaching-idempotent.

(3) If R is a right attaching-idempotent ring, then J(R) is contained in

R\Cr(R).

Proof. (1) is shown by definition.
(2) Let a ∈ R be a zero-divisor. Then ab = 0 = ca for some nonzero b, c ∈ R.

Thus R is attaching-idempotent.
(3) Let R be a right attaching-idempotent ring. Then, for a ∈ J(R), there

exists 0 6= b ∈ R such that (ab)2 = ab. But since ab ∈ J(R), we must have
ab = 0. This implies a ∈ R\Cr(R). �

Recall that regular rings are attaching-idempotent, but this implication is
irreversible by the following. This is also shown by Example 2.1 to follow,
but we see two sorts of constructions applicable to related situations in the
following example.
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Example 1.3. (1) Every element of a finite ring is either a unit or a zero-divisor
by Lemma 1.4(3) to follow. So a finite ring R with J(R) 6= 0 is attaching-
idempotent but not regular. For example, Matn(Z4) (n ≥ 1) is attaching-
idempotent but not regular because the Jacobson radical is Matn(2Z4) 6= 0.

(2) There exists an infinite noncommutative attaching-idempotent ring but
not regular. Let K = Z2 and A = K〈a, b〉 be the free algebra with noncom-
muting indeterminates a, b over K. Next let I be the ideal of A generated
by

a2 − a, b2, and ba.

Set R = A/I and identify every element of A with its image in R for simplicity.
Then we have the relations

a2 = a and b2 = ba = 0.

Consider the ideal of R generated by b, J say. Then J2 = 0 since b2 = ba = 0,
and moreover we have

R

J
∼=

K〈a〉

(a2 − a)
∼= K +Ka,

where (a2 − a) is the ideal of K〈a〉(= K[a]) generated by a2 − a. Note that
every element of K +Ka is an idempotent as can be seen by the computation
02 = 0, 12 = 1, a2 = a, (1 + a)2 = 1 + a. This yields J = J(R).

Every element of R is of the form

k0 + k1a+ k2b+ k3ab

with ki ∈ K. Let f = k0 + k1a+ k2b+ k3ab and g = a. Then

fg = (k0 + k1a+ k2b+ k3ab)a = (k0 + k1a)a ∈ K +Ka

is an idempotent since (k0+k1a)a is an idempotent. Thus R is right attaching-
idempotent.

For the case of k0 = 1, we have a(1+a+b+ab) = 0, (1+a+b+ab)(1+a+b) =
1 + a, (1 + a)(1 + a + ab) = 1 + a, (1 + a)(1 + a) = 1 + a, (1 + b)(1 + b) = 1,
(1+ab)(1+ab) = 1, and (1+ b+ab)(1+ b+ab) = 1. For the case of k0 = 0, we
have b(k1a + k2b + k3ab) = 0. Thus R is also left attaching-idempotent. But
brb = 0 for all b ∈ R, so R is not regular.

Following the literature, a ring R is called directly finite if ab = 1 implies
ba = 1 for a, b ∈ R. It is shown that the class of directly finite rings contains
rings that satisfy either the ascending or the descending chain condition for
principal right ideals generated by idempotents, in [7, Theorem 1]. So right or
left Artinian rings are directly finite. We will use this fact freely.

A ring is called locally finite if every finite subset generates a finite multi-
plicative semigroup in [5]. It is shown that a ring is locally finite if and only
if every finite subset generates a finite subring (possibly without identity), in
[5, Theorem 2.2(1)]. The class of locally finite rings is easily shown to contain
finite rings and algebraic closures of finite fields.
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Lemma 1.4. (1) Locally finite rings are directly finite.

(2) Let R be a locally finite ring and a ∈ R. Then some power of a is an

idempotent.

(3) Every element of a locally finite ring is either a unit or a zero-divisor.

Proof. Let R be a locally finite ring.
(1) Assume that ab = 1 for a, b ∈ R. Consider the subring of R generated

by a, b, S say. Then S is finite and so directly finite, entailing ba = 1.
(2) Since R is locally finite, ak is an idempotent for some k ≥ 1 by the proof

of [6, Proposition 16].
(3) Let R be a locally finite ring and 0 6= a ∈ R be an arbitrary nonunit.

Then ak is an idempotent for some k ≥ 1 by (2). If aℓ(1 − ak) = 0 for all
positive integers ℓ, then a(1 − ak) = 0 6= 1 − ak, and so a is a zero-divisor.
Since ak(1 − ak) = 0, we can suppose that there exists the smallest positive
integer k0 (1 ≤ k0 ≤ k) so that ak0(1 − ak) = 0 6= ak0−1(1 − ak). So a is a
zero-divisor. �

Proposition 1.5. (1) Locally finite rings are attaching-idempotent.

(2) Local rings with nil Jacobson radical are attaching-idempotent.

Proof. (1) is shown by Lemmas 1.2(2) and 1.4(3).
(2) Let R be a local ring with nil Jacobson radical. Then every element is

either a unit or nilpotent, so R is attaching-idempotent. �

The condition “with nil Jacobson radical” in Proposition 1.5(2) is not su-
perfluous as can be seen by the local ring F [[x]] over a field. In fact, each of xb
and cx cannot be an idempotent for any nonzero b, c ∈ F [[x]].

Given a right attaching-idempotent ringR, it is natural to ask whether eRe is
also a right attaching-idempotent ring for any idempotent e ∈ R. However the
answer is negative by the following argument. Consider the right attaching-

idempotent ring R =
(

Q Q[x]

0 Q[x]

)
in Example 1.1(1). Letting e = e22 ∈ R,

eRe ∼= Q[x] is neither left nor right attaching-idempotent.

Lemma 1.6. Let R be a ring and e2 = e ∈ R. If eRe and (1 − e)R(1 − e)
are both right (resp., left) attaching-idempotent, then R is right (resp., left)
attaching-idempotent.

Proof. By the Pierce decomposition of R, R = eRe⊕ eR(1− e)⊕ (1− e)Re⊕
(1 − e)R(1 − e). Note that eR(1 − e) and (1 − e)Re are clearly right (resp.
left) attaching-idempotent. Since eRe and (1− e)R(1− e) are right (resp., left)
attaching-idempotent, R is right (resp., left) attaching-idempotent by Lemma
1.2(1). �

Using Lemma 1.6, an inductive argument gives immediately the following.

Proposition 1.7. Let R be a ring and e1, . . . , en ∈ R be orthogonal idempotents

such that e1 + · · · + en = 1. If each eiRei is right (resp., left) attaching-

idempotent, then R is right (resp., left) attaching-idempotent.
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The following two results are direct consequences of Proposition 1.7.

Corollary 1.8. If R is a right (resp., left) attaching-idempotent ring, then

Matn(R) is right (resp., left) attaching-idempotent.

Corollary 1.9. Let R be a ring and M1, . . . ,Mn be R-modules, M = M1 +
· · · + Mn say. If each EndRMi is right (resp., left) attaching-idempotent for

each i, then EndRM is right (resp., left) attaching-idempotent, where EndRMi

and EndRM mean the endomorphism ring of Mi and M respectively.

By Proposition 1.7, we note that
(1) if P is a finitely projective module over a right (resp., left) attaching-

idempotent ring R, then EndRP is a right (resp., left) attaching-idempotent
ring;

(2) for each n ≥ 1, a ring R is right (resp., left) attaching-idempotent if and
only if the ring of all n×n upper (or lower) triangular matrices over R is right
(resp., left) attaching-idempotent.

A proper ideal I in a ring R is called right attaching-idempotent if for 0 6=
a ∈ I there exists 0 6= b ∈ I such that ab is an idempotent, i.e., I is right
attaching-idempotent as a ring without identity. It is shown in [3, Lemma 1.3]
that for ideals J ⊆ K of a ring R, K is regular if and only if both J and K/J
are regular. For a right attaching-idempotent ring R, this result is dependent
on ideals of R by the following.

Example 1.10. (1) Consider the ring R =
(

Q Q[x]

0 Q[x]

)
as given in Example 1.1.

We note that all proper nonzero ideals of R are

I1 =

(
0 Q[x]
0 Q[x]

)
, I2 =

(
Q Q[x]
0 0

)
.

We also note that both I1 and R/I1 ≃ Q are right attaching-idempotent.
On the other hand, I2 is right attaching-idempotent but R/I2 ≃ Q[x] is not
right attaching-idempotent.

(2) Consider the ring S = Z × Q and an ideal I = Z × {0} of S. Then I is
not an (right) attaching-idempotent ideal of S but both S and S/I are (right)
attaching-idempotent.

We next extend the construction of the rings in Example 1.1 to a more
general case.

Proposition 1.11. Let A,B be rings and AMB be an (A,B)-bimodule.

(1) If A is right attaching-idempotent, then so is R = (A M
0 B ).

(2) If B is left attaching-idempotent, then so is R = (A M
0 B ).

Proof. (1) Let A be right attaching-idempotent and ( a m
0 b ) ∈ R. If a = 0, then

( 0 m
0 b ) (

1 0
0 0

) = 0. Assume a 6= 0. Since A is right attaching-idempotent, aa1
is an idempotent for some 0 6= a1 ∈ A. This yields ( a m

0 b )
(
a1 0

0 0

)
=

(
aa1 0

0 0

)
=(

aa1 0

0 0

)2
.

The proof of (2) is similar. �
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Let A be an algebra, with or without identity, over a commutative ring S.
Following Dorroh [2], the Dorroh extension of A by S is the Abelian group
A⊕ S with multiplication given by (r1, s1)(r2, s2) = (r1r2 + s1r2 + s2r1, s1s2)
for ri ∈ A and si ∈ S. One may conjecture that the class of right attaching-
idempotent rings is closed under Dorroh extensions, but the following erases
the possibility.

Example 1.12. Let A =
(
Q(x) Q(x)
0 0

)
be the subring of U2(Q(x)) and R be

the Dorroh extension of A by Z, where Q(x) is the quotient field of Q[x]. Let
a = (( x x

0 0 ) , 2) ∈ R. Suppose (ab)2 = ab for 0 6= b = (
(
e f
0 0

)
,m) ∈ R. Then

m = 0 from (2m)2 = 2m, entailing ab = (
(
xe+2e xf+2f

0 0

)
, 0). Next we get e = 0

from (xe + 2e)2 = xe + 2e, entailing b = (
(
0 f
0 0

)
, 0). Note f 6= 0 since b 6= 0.

Consequently ab = (
(
0 xf+2f
0 0

)
, 0). Since xf +2f 6= 0, ab is not an idempotent.

Thus R is not right attaching-idempotent.

2. Generalized regular rings

A ring R (possibly without identity) will be called generalized regular if for
0 6= a ∈ R there exists 0 6= b ∈ R such that ab is a nonzero idempotent. It
is obvious that regular rings are clearly generalized regular, and generalized
regular rings are right (left) attaching-idempotent. Each of these implications
is strict by the following.

Example 2.1. (1) Let F be a field and define

R = {(ai) ∈

∞∏

i=1

Ei | there exists m ≥ 1 such that aj ∈ U2(F ) for all j ≥ m},

where Ei = Mat2(F ) for all i. Consider the element

a = (ai) = (e12, e12, . . . , e12, . . .) ∈ R, i.e., ai = e12 for all i.

For any b = (bi) ∈ R there exists n ≥ 1 such that bk ∈ U2(F ) for all k ≥ n,
and so ck = 0 for all k ≥ n, where (ci) = aba. Thus a /∈ aRa, concluding that
R is not regular. But R is generalized regular by Theorem 2.4 to follow since
Mat2(F ) is regular.

(2) Let S = Z × Q. Then S is (right, left) attaching-idempotent, but is
clearly not generalized regular.

The Jacobson radical of a regular ring is known to be zero. We see that
generalized regular rings are also semiprimitive in the following.

Lemma 2.2. (1) The generalized regularity is left-right symmetric.

(2) Generalized regular rings are semiprimitive.

(3) Let R be a ring. For 0 6= a ∈ R there exists unique b ∈ R with 0 6=
(ab)2 = ab if and only if R is a division ring.
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Proof. (1) Let R be a generalized regular ring and 0 6= a ∈ R. Then there
exists 0 6= b ∈ R such that 0 6= ab = (ab)2. This yields (baba)2 = babababa =
baba ∈ Ra, obtaining baba 6= 0 and bab 6= 0 from a(baba)b = ab 6= 0. The
converse is proved similarly.

(2) Let R be a generalized regular ring and take 0 6= a ∈ J(R) on the
contrary. Then (ab)2 = ab 6= 0 for some b ∈ R. But ab ∈ J(R), a contradiction.
Thus J(R) must be zero.

(3) Assume that given 0 6= a ∈ R there exists unique b ∈ R with 0 6= (ab)2 =
ab. We first show that R is a domain. Let c, d ∈ R\{0} satisfy cd = 0. By
assumption, there exists unique e ∈ R with (ce)2 = ce. Then we also have
(c(d + e))2 = c(d + e), but the uniqueness of e forces d + e = e. This yields
d = 0, a contradiction. This result implies ab = 1 since 1 is the only nonzero
idempotent in a domain. We also get ba = 1 since R is Abelian. The converse
is clear. �

R = Mat2(D) is clearly (generalized) regular over a division ring D. For
e11 ∈ R there exist b1 = e11, b2 = e11 + e22 ∈ R such that ab1 = ab2 = e11 is
an idempotent, noting b1 6= b2.

The following is similar to [3, Theorem 1.1].

Proposition 2.3. For a ring R the following conditions are equivalent:
(1) R is generalized regular ring;
(2) Every nonzero (principal) right ideal contains a nonzero idempotent;
(3) Every nonzero (principal) left ideal contains a nonzero idempotent.

Proof. (1)⇒(2). Let R be a generalized regular ring and aR 6= 0 for a ∈ R.
Then 0 6= ab = (ab)2 for some b ∈ R. Note ab ∈ aR.

(2)⇒(1). Let 0 6= c ∈ R. By the condition, cR contains a nonzero idempo-
tent. This must be of the form cd with d ∈ R.

The proof of the equivalence of (1) and (3) is done by the left version of the
preceding one and help of Lemma 2.2(1). �

Following Nicholson [9], a ring R is said to be an I0-ring if for a /∈ J(R)
there exists 0 6= x ∈ R such that xax = x. So, by Lemma 2.2(2), a generalized
regular ring is just a semiprimitive I0-ring, letting x = bab in the definition of
generalized regular rings. Thus Proposition 2.3 follows also from [9, Lemma
1.1].

The following theorem will play an important role in this note.

Theorem 2.4. (1) Let Ri be a regular ring and Si be a subring of Ri for all

i ∈ I, where I is a countably infinite set. Define

R = {(ai) ∈

∞∏

i=1

Ri | there exists m ≥ 1 such that aj ∈ Sj for all j ≥ m}.

Then R is a generalized regular ring.
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(2) Let A be a regular ring and B be a subring of A. Define

R = {(ai) ∈

∞∏

i=1

Ri | there exists m ≥ 1 such that am ∈ B and

am = am+1 = · · · },

where I is a countably infinite set and Ri = A for all i ∈ I. Then R is a

generalized regular ring.

Proof. Let 0 6= a = (ai) ∈ R and say that k ≥ 1 is the smallest integer such
that ak 6= 0. Since Rk is regular, there exists α ∈ Rk such that akαak = ak.
Consider the sequence

b = (bi) = (0, . . . , 0, α, 0, . . . ) ∈ R, i.e., bk = α and bi = 0 for all i 6= k.

Then ab, ab = (ci) say, is a nonzero idempotent since ck = akα = (akα)
2 6= 0

and ci = 0 for all i 6= k. Thus R is generalized regular, noting 0 6= (ab)2 = ab.
The proof of (2) is almost same. �

The Jacobson radical of a generalized regular ring is zero by Lemma 2.2(2).
So J(R) = 0 for the ring R in Example 2.1. In fact, letting 0 6= (ai) ∈ J(R) on
the contrary, at 6= 0 say. Then we get (bi) ∈ J(R) with bt = 1 and bi = 0 for
all i 6= t since Mat2(F )atMat2(F ) = Mat2(F ) (1 =

∑m

j=1
rjatsj say), via the

multiplication

(bi) =
m∑

j=1

(r(j)i)(ai)(s(j)i),

where r(j)t = rj , s(j)t = sj and r(j)i = 0, s(j)i = 0 for all i 6= t. It then
follows that 1− (bj) is not a unit, a contradiction. Thus J(R) = 0.

For a reduced ring R, it is well-known that r1r2 · · · rn = 0 implies

rσ(1)rσ(2) · · · rσ(n) = 0

for any permutation σ of the set {1, 2, . . . , n}, where n ≥ 1 and ri ∈ R for all
i. We will use this fact without mentioning.

A ring R (possibly without identity) is called strongly regular if for every
x ∈ R there exists y ∈ R such that x = x2y in [3]. A ring R (possibly without
identity) will be called strongly generalized regular if for every 0 6= x ∈ R
there exists y ∈ R such that 0 6= xy = x2y2. Strongly regular rings are clearly
strongly generalized regular, but the converse need not hold by help of Theorem
2.5 and Example 2.8 to follow. A ring is strongly regular if and only if it is
Abelian regular [3, Theorem 3.5]. We see a similar result for generalized regular
rings as follows.

Theorem 2.5. A ring is strongly generalized regular if and only if it is Abelian

generalized regular.
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Proof. Let R be an Abelian generalized regular ring and 0 6= x ∈ R. Then
there exists y ∈ R such that 0 6= xy = xyxy. Since xy is central in R, we have
xy = xy(xy) = x(xy)y = x2y2.

Conversely, assume that R is strongly generalized regular and 0 6= x ∈ R.
Then 0 6= xy = x2y2 for some y ∈ R. Here if x2 = 0, then 0 6= xy = x2y2 = 0,
a contradiction. This leads us to conclude that R a reduced ring. From xy =
x2y2, we get x(xy − 1)y = 0. But since R is reduced, we have xy(xy − 1) = 0
and so 0 6= xy = xyxy. Reduced rings are clearly Abelian, and therefore R is
Abelian generalized regular. �

Applying the proof of Theorem 2.5, we can obtain a simpler proof of the
necessity of the well-known result that a ring is Abelian regular if and only if
it is strongly regular ([3, Theorem 3.5]).

For a regular ring R, the following conditions are equivalent: (1) R is
Abelian; and (2) R/P is a division ring for any prime ideal P of R [3, Theorem
3.2]. We find a similar result for generalized regular rings as follows.

Corollary 2.6. Let R be a generalized regular ring. Then the following con-

ditions are equivalent:
(1) R is Abelian;
(2) R is reduced;
(3) R/P is a domain for any minimal prime ideal P of R.

Proof. (1)⇒(2) is obtained by Theorem 2.5 and its proof.
(2)⇒(1) is clear, and (3)⇒(2) comes from the elementary fact that R/N∗(R)

is a subdirect product of R/P where P runs over all minimal prime ideals of
R.

(2)⇒(3). Let R be a reduced ring and let P be any minimal prime ideal of
R. Then R/P is a domain by [10, Proposition 1.11]. �

One may compare Corollary 2.6 with [3, Theorem 3.2]. Mat2(F ), over a field
F , is regular but not reduced. Letting x = e12, x

2 = 0 and so there cannot
exist y ∈ Mat2(F ) such that 0 6= xy = x2y2.

We apply Theorem 2.4(2) to compare Corollary 2.6 with [3, Theorem 3.2].
In Theorem 2.4(2), consider the ring R with A = Q(x), the quotient field of
Z[x], and B = Z[x]. Then R is generalized regular by Theorem 2.4(2). Set
I = ⊕∞

i=1
Ri. Then R/I is isomorphic to Z[x] which is a domain but not a

division ring, noting that I is a prime ideal of R.

Proposition 2.7. (1) Let R be a generalized regular ring. Then R is strongly

generalized regular if and only ab = ba whenever ab is an idempotent for a, b ∈
R.

(2) Let R be a regular ring. Then R is strongly regular if and only if ab = ba
whenever ab is an idempotent for a, b ∈ R.

Proof. (1) Suppose that R is strongly generalized regular and that ab = (ab)2

for a, b ∈ R. We use the reducedness of R freely, based on Theorem 2.5 and
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Corollary 2.6. From ab(1− ab) = 0, we get a(1− ab)b = 0, ba(1− ab) = 0, and
b(1− ab)a = 0, entailing ab = aabb, ba = baab, and ba = (ba)2. Thus

ab = (ab)(ab) = a(ba)b = (ba)(ab) = ba.

The converse is clear.
(2) Strongly regular rings are clearly strongly generalized regular, so the

following is an immediate consequence of (1). �

Comparing Proposition 2.7 with [3, Theorem 3.2], one may ask whether re-
duced generalized regular rings can be regular. However the following provides
a negative answer.

Example 2.8. There exists a reduced generalized regular ring but not regular.
Let D be a division ring. Then D[x] is a Noetherian domain by [8, Theorem
2.9]. So there exists a right quotient division ring of D[x], say D(x), by [8,
Theorem 1.15 and Corollary 1.14].

We next apply the construction of Example 2.1 to this situation. Define

R = {(ai) ∈

∞∏

i=1

Ei | there exists m ≥ 1 such that aj ∈ D[x] for all j ≥ m},

where Ei = D(x) for all i. Then clearly R is a reduced ring. Consider the
element

a = (ai) = (x, x, . . . , x, . . .) ∈ R, i.e., ai = x for all i.

For any b = (bi) ∈ R there exists n ≥ 1 such that bk ∈ D[x] for all k ≥ n,
and so ck = bkx

2 for all k ≥ n, where (ci) = aba. Thus a /∈ aRa, concluding
that R is not regular. But R is generalized regular by Theorem 2.4 since D(x)
is a division ring (hence regular).

A ring R is called unit-regular if for every x ∈ R there exists u ∈ G(R) such
that xux = x in [1]. Abelian regular rings are unit-regular by [3, Corollary 4.2].
One can refer to the statements for unit-regular rings obtained by Henriksen
[4] to delimit generalizations of unit-regular rings.

A ring R is usually called directly finite if ab = 1 implies ba = 1 for a, b ∈ R.
Abelian rings are clearly directly finite. Abelian regular rings are proved to be
unit-regular in [3, Corollary 4.2], by help of module theoretic method. In the
following we prove that independently by using a direct computation.

Theorem 2.9. Abelian regular rings are unit-regular.

Proof. Let R be an Abelian regular ring and x ∈ R. Then x = x2y 6= 0 for
some y ∈ R. Consider an element 1 + x− xy. Then

(1 + x− xy)(1− xy + xy2)

= 1− xy + xy2 + x− xxy + xxy2 − xy + xyxy − xyxy2

= 1− xy + xy2 + x− x+ xy − xy + xy − xy2 = 1
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by help of Proposition 2.7(2). So 1 − xy + xy2 ∈ G(R). Now letting u =
1− xy + xy2, we have

xux = x(1 − xy + xy2)x = (x − xxy + xxy2)x = (x− x+ xy)x = xyx = x,

concluding that R is unit-regular. �

Observing the proof of Theorem 2.9, we can see that the method in the proof
of Badawi [1, Theorem 2] is also applicable to obtain another simpler proof.

Let R be a strongly generalized regular ring and xy = xyxy for x, y ∈ R.
Then xy = yx by Proposition 2.7(1). In this situation, we also have units,
induced by x and y, as in the following computation:

(1− xy + x2y)(1− xy + xy2)

= 1− xy + xy2 − xy + xyxy − xyxy2 + x2y − x2yxy + x2yxy2

= 1− xy + xy2 − xy + xy − xy2 + x2y − x2y + xy = 1.

Thus, considering the proof of Theorem 2.9, one may ask whether strongly
generalized regular rings are unit-regular. However the following provides a
negative answer.

Example 2.10. There exists a strongly generalized regular ring but not unit-
regular. In Theorem 2.4(2), consider the ring R with A = Q(x), the quotient
field of Z[x], and B = Z[x]. Then R is generalized regular by Theorem 2.4(2).
R is moreover reduced (hence Abelian), and so R is strongly generalized regular
by Theorem 2.5.

As in Example 2.10, consider the element a = (x, x, . . . , x, . . .) in R. Note
that for every unit u = (ui) in R there exists m ≥ 1 such that uj = 1 or
uj = −1 for all j ≥ m. So we have

aua = (x, x, . . . , x, . . .)u(x, x, . . . , x, . . .) = (x2, x2, . . . , x2, . . .),

(bi) say. This implies that bm = bm+1 = · · · = x2 or bm = bm+1 = · · · = −x2,
and so aua cannot be a. Therefore R is not unit-regular.

3. Structural properties of generalized regular rings

In this section we study a more structural property of generalized regular
rings. We actually show that the generalized regularity is a Morita invariant
property. The class of generalized regular rings is not closed under subrings as
we see the rings D[x] $ D(x) in Example 2.8. But we see a kind of subring
which preserves the generalized regularity in the following.

Proposition 3.1. Let R be a generalized regular ring.

(1) Let e, f be idempotents in R such that eRf 6= 0 and fRe 6= 0. Then for

0 6= x ∈ eRf there exists y ∈ fRe such that 0 6= (xy)2 = xy.
(2) If 0 6= e = e2 ∈ R, then eRe is a generalized regular ring.
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Proof. (1) Let 0 6= x ∈ eRf . Since R is generalized regular, 0 6= (xy)2 = xy for
some y ∈ R. Seeing that

xy = xyxy = (exf)y(exf)y = (exf)(fye)(exf)y,

we can let y = fye ∈ fRe.
(2) is an immediate consequence of (1). �

As follows, we see that the generalized regularity is a Morita invariant prop-
erty.

Theorem 3.2. (1) Let e1, . . . , en be orthogonal idempotents in a ring R such

that e1 + · · · + en = 1. Then R is generalized regular if and only if for each

0 6= x ∈ eiRej there exists y ∈ ejRei such that xyxy = xy 6= 0.
(2) If S is a generalized regular ring, then so is R = Matn(S) for n ≥ 2.

Proof. (1) We apply the method of proof of [3, Lemma 1.6]. First assume that
R is generalized regular, and let 0 6= x ∈ eiRej . Then 0 6= xy = xyxy for
some 0 6= y ∈ R. Since x = xej = eixej and (xy)ei = (xy)(xy)ei, there exists
0 6= ejyei such that

xejyei = xyei = (xy)(xy)ei = (xejyei)(xejyei) 6= 0.

Conversely, assume that for any 0 6= x ∈ eiRej there exists 0 6= y ∈ ejRei
such that 0 6= xy = xyxy. We proceed by induction on n. Since the case n = 1
is trivial, we begin with the case n = 2. First consider an element 0 6= x ∈ R
such that e1xe2 = 0, entailing e1xe1 + e2xe1 + e2xe2 6= 0. If e1xe1+ e2xe2 = 0,
then x = e2xe1, so the assumption works.

Let e1xe1 + e2xe2 6= 0. Then there are elements y ∈ e1Re1 and z ∈ e2Re2
such that

(e1xe1)y(e1xe1)y = (e1xe1)y and (e2xe2)z(e2xe2)z = (e2xe2)z,

noting that (e1xe1)y 6= 0 or (e2xe2)z 6= 0. This yields

x(y + z)x(y + z)

= (e1xe1 + e2xe1 + e2xe2)(y + z)(e1xe1 + e2xe1 + e2xe2)(y + z)

= (e1xe1y + e2xe1y + e2xe2z)(e1xe1y + e2xe1y + e2xe2z)

= e1xe1y + e2xe2z + e2x(y + z)xe1y.

As a result, we see that the element x′ = x(y + z) − x(y + z)x(y + z) lies in
e2Re1 since (e1xe1)y 6= 0 or (e2xe2)z 6= 0.

x(y + z)− x(y + z)x(y + z)

= (e1xe1y + e2xe1y + e2xe2z)− (e1xe1y + e2xe2z + e2x(y + z)xe1y)

= e2xe1y − e2x(y + z)xe1y.

Here if x′ = 0, then we are done, noting that x(y+z) 6= 0 since (e1xe1)y 6= 0 or
(e2xe2)z 6= 0. So suppose x′ 6= 0. Then x′wx′w = x′w 6= 0 for some w ∈ e1Re2
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by assumption. This implies that xvxv = xv 6= 0 for some v ∈ R, letting
v = x((y + z)− (y + z)x(y + z))w.

Now consider the case of x ∈ R with e1xe2 6= 0. Then by assumption, there
exists y ∈ e2Re1 such that (e1xe2)y(e1xe2)y = (e1xe2)y = e1xy 6= 0. Since
y ∈ e2Re1, we see that e1xye2 = 0. By the case above, there exists an element
z ∈ R such that (xy)z(xy)z = (xy)z 6= 0, hence x(yz)x(yz) = x(yz) 6= 0.
Therefore, R is generalized regular.

Finally, let n > 2, and assume that the result holds for n − 1 orthogonal
idempotents. Setting f = e2 + · · · + en and g = e1 + e3 + e4 + · · · + en, we
thus know that fRf and gRg are generalized regular. Consider any element
0 6= x ∈ e1Rf . There exists y ∈ fRe1 such that (xf)y(xf)y = xfy = xy 6= 0.
But e1xye2 = 0, so xy ∈ gRg, whence xyzxyz = xyz for some z ∈ gRg. As
a result, xwxw = xw for some w ∈ R, hence we obtain fwe1 ∈ fRe1 such
that x(fwe1)x(fwe1) = x(fwe1) 6= 0. Likewise, for any 0 6= x ∈ fRe1 there
is some t ∈ e1Rf such that xtxt = xt 6= 0. Applying the case of n = 2 to the
orthogonal idempotents e1 and f , we conclude that R is generalized regular.
Therefore the induction works.

(2) Let S be a generalized regular ring and ei = eii ∈ R for i = 1, . . . , n.
Then ei’s are orthogonal idempotents in R such that e1 + · · ·+ en = 1.

Let 0 6= x = (xij) ∈ eiRej, i.e., xij 6= 0 and other entries of x are all zero.
Then eixej = xij 6= 0, a say. Since S is generalized regular, there exists b ∈ S
such that abab = ab 6= 0. Let y = (yij) ∈ S such that yji = b and other entries
of y are all zero. Then y ∈ ejRei such that

xy = (aeij)(beji) = (ab)eii = (abab)eii = ((ab)eii)((ab)eii) = xyxy.

So Matn(S) is generalized regular by (1). �

The following is obtained by help of Proposition 3.1(2) and Theorem 3.2.

Corollary 3.3. If P is a finitely generated projective module over a generalized

regular ring R, then the endomorphism ring of P over R is also generalized

regular.

The generalized regularity is Morita invariant by Proposition 3.1(2) and
Theorem 3.2.

A proper ideal I in a ring R is called generalized regular if for 0 6= a ∈ I
there exists 0 6= b ∈ I such that ab is a nonzero idempotent, i.e., I is generalized
regular as a ring without identity. It is shown in [3, Lemma 1.3] that for ideals
J ⊆ K of a ring R, K is regular if and only if J and K/J are both regular.
So it is natural to ask whether this result is also valid for generalized regular
rings. The sufficiency is true as we see later, but the answer for the necessity
is negative by the following.

Example 3.4. (1) Consider the ring

R = {(ai) ∈

∞∏

i=1

Ei | there exists m ≥ 1 such that aj ∈ U2(F ) for all j ≥ m},
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where Ei = Mat2(F ) for all i, in Example 2.1. Set I = ⊕∞
i=1Ei. Then I is a

proper ideal of R such that

R

I
∼=

∞∏

i=1

Fi where Fi = U2(F ) for all i.

R/I is not semiprimitive, and so this ring is not generalized regular by Lemma
2.2(2).

(2) Let R be a ring defined by

R = {(ai) ∈
∞∏

i=1

Ei | there exists m ≥ 1 such that aj ∈ U2(Z) for all j ≥ m},

where Ei = Mat2(Q) for all i. Then R is generalized regular by applying the
proof of Theorem 2.4. Next set

J = {(ai) ∈ R | there exists m ≥ 1 such that aj ∈

(
0 Z

0 0

)
for all j ≥ m}.

Then J is a proper ideal of R such that

R

J
∼=

∞∏

i=1

Fi where Fi =

(
Z 0
0 Z

)
for all i.

R/J is not generalized regular as can be seen by the sequence (bi) with bi =
( 2 0
0 2

) for all i (in fact, (bi)(ci) cannot be a nonzero idempotent for any (ci) ∈
R/J).

Note that I2 = I and J2
$ J in Example 3.4.

Proposition 3.5. Let I ⊆ K be ideals of a ring R.

(1) If K is generalized regular, then so is I.
(2) If I and K/I are both generalized regular, then K is generalized regular.

Proof. (1) Suppose that K is generalized regular and let 0 6= a ∈ I. Then there
exists a nonzero b ∈ K such that ab is a nonzero idempotent of I. We apply
the proof of Lemma 2.2(1). Let z = bab ∈ I. Then z 6= 0 and

(az)2 = (az)(az) = (abab)(abab) = (ab)(ab) = az

is a nonzero idempotent of I, and so I is generalized regular.
(2) Assume that I and K/I are both generalized regular, and let 0 6= a ∈ K.

It suffices to deal with the case of a /∈ I. Then, from the generalized regularity
of K/I, we have that ab /∈ I and c = abab− ab ∈ I for some b ∈ K \ I. Since
I is generalized regular, there exists a nonzero p ∈ I such that cp is a nonzero
idempotent. Thus cp = a(bab− b)p is a nonzero idempotent for some nonzero
(bab− b)p ∈ K, which means that K is generalized regular. �

In the following we see a kind of condition for I under which K/I is gen-
eralized regular, where I ( K are ideals of a ring R and K is generalized
regular.
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Proposition 3.6. Let I ( K be ideals of a ring R and suppose that K is

generalized regular. Assume that aR∩ I = 0 whenever a /∈ I and a is not right

invertible in R. Then K/I is generalized regular.

Proof. Let ā = a+ I ∈ K/I be nonzero. If a is right invertible in R, then we
are done. So let a be not right invertible in R. Since K is generalized regular,
there exists b ∈ K such that abab = ab 6= 0. From a /∈ I, we have ab /∈ I by
assumption, i.e., āb̄ = ab + I is nonzero in K/I. Moreover (āb̄)2 = āb̄, so K/I
is generalized regular. �

Let R = Zn be such that n = p1p2 · · · pk and pi’s are distinct primes. Here
suppose that pi1 , pi2 , . . . , pik−1

are distinct and {i1, i2, . . . , ik−1} ⊂ {1, 2, . . . , n}.
Then (pi1pi2 · · · pik−1

)Zn is such an ideal of R which satisfies the assumption
of Proposition 3.6.
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