DOI QR코드

DOI QR Code

Immunological benefits by ginseng through reciprocal regulation of Th17 and Treg cells during cyclosporine-induced immunosuppression

  • Heo, Seong Beom (Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea) ;
  • Lim, Sun Woo (Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea) ;
  • Jhun, Joo Yeon (Centre for Rheumatic Diseases, The Catholic University of Korea) ;
  • Cho, Mi La (Centre for Rheumatic Diseases, The Catholic University of Korea) ;
  • Chung, Byung Ha (Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea) ;
  • Yang, Chul Woo (Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea)
  • Received : 2015.01.16
  • Accepted : 2015.04.20
  • Published : 2016.01.15

Abstract

Background: It is not clear whether ginseng affects cyclosporine A (CsA)-induced desirable immunosuppressive action. In this study, we evaluated the immunological influence of combined treatment of ginseng with CsA. Methods: Using CD4+ T cells from mouse spleens stimulated with the T cell receptor (TCR) or allogeneic antigen-presenting cells (APCs), we examined the differentiation of naïve T cells into T helper 1 (Th1), Th2, Th17, and regulatory T cells (Tregs), and their cytokine production during treatment by Korean Red Ginseng extract (KRGE) and/or CsA. The influence of KRGE on the allogeneic T cell response was evaluated by mixed lymphocyte reaction (MLR). We also evaluated whether signal transducer and activator of transcription 3 (STAT3) and STAT5 are implicated in this regulation. Results: Under TCR stimulation, KRGE treatment did not affect the population of CD4+interferon gamma ($IFN{\gamma}$)+ and CD4+interleukin (IL)-4+ cells and their cytokine production compared with CsA alone. Under the Th17-polarizing condition, KRGE significantly reduced the number of CD4+IL-17+ cells and CD4+/phosphorylated STAT3 (p-STAT3)+ cells, but increased the number of CD4+CD25+forkhead box P3 (Foxp3)+ cells and CD4+/p-STAT5+ cells compared with CsA alone. In allogeneic APCs-stimulated CD4+ T cells, KRGE significantly decreased total allogeneic T cell proliferation. Consistent with the effects of TCR stimulation, KRGE reduced the number of CD4+IL-17+ cells and increased the number of CD4+CD25+Foxp3+ cells under the Th17-polarizing condition. Conclusion: KRGE has immunological benefits through the reciprocal regulation of Th17 and Treg cells during CsA-induced immunosuppression.

Keywords

References

  1. Grinyo JM, Cruzado JM, Millan O, Caldes A, Sabate I, Gil-Vernet S, Seron D, Brunet M, Campistol JM, Torras J, et al. Low-dose cyclosporine with mycophenolate mofetil induces similar calcineurin activity and cytokine inhibition as does standard-dose cyclosporine in stable renal allografts. Transplantation 2004;78:1400-3. https://doi.org/10.1097/01.TP.0000141227.63639.63
  2. Kobayashi T, Momoi Y, Iwasaki T. Cyclosporine A inhibits the mRNA expressions of IL-2, IL-4 and IFN-gamma, but not TNF-alpha, in canine mononuclear cells. J Vet Med Sci 2007;69:887-92. https://doi.org/10.1292/jvms.69.887
  3. Chung BH, Kim KW, Kim BM, Piao SG, Lim SW, Choi BS, Park CW, Kim YS, Cho ML, Yang CW. Dysregulation of Th17 cells during the early post-transplant period in patients under calcineurin inhibitor based immunosuppression. PLoS One 2012;7:e42011. https://doi.org/10.1371/journal.pone.0042011
  4. Deteix C, Attuil-Audenis V, Duthey A, Patey N, McGregor B, Dubois V, Caligiuri G, Graff-Dubois S, Morelon E, Thaunat O. Intragraft Th17 infiltrate promotes lymphoid neogenesis and hastens clinical chronic rejection. J Immunol 2010;184:5344-51. https://doi.org/10.4049/jimmunol.0902999
  5. Kim KW, Chung BH, Kim BM, Cho ML, Yang CW. The effect of mammalian target of rapamycin inhibition on T helper type 17 and regulatory T cell differentiation in vitro and in vivo in kidney transplant recipients. Immunology 2015;144:68-78. https://doi.org/10.1111/imm.12351
  6. Mas VR, Archer KJ, Scian M, Maluf DG. Molecular pathways involved in loss of graft function in kidney transplant recipients. Expert Rev Mol Diagn 2010;10:269-84. https://doi.org/10.1586/erm.10.6
  7. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol 2009;27:485-517. https://doi.org/10.1146/annurev.immunol.021908.132710
  8. Steinman L. A brief history of T(H)17, the first major revision in the T(H)1/T(H) 2 hypothesis of T cell-mediated tissue damage. Nat Med 2007;13:139-45. https://doi.org/10.1038/nm1551
  9. Burchill MA, Yang J, Vogtenhuber C, Blazar BR, Farrar MA. IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol 2007;178:280-90. https://doi.org/10.4049/jimmunol.178.1.280
  10. Passerini L, Allan SE, Battaglia M, Di Nunzio S, Alstad AN, Levings MK, Roncarolo MG, Bacchetta R. STAT5-signaling cytokines regulate the expression of FOXP3 in CD4+CD25+ regulatory T cells and CD4+CD25- effector T cells. Int Immunol 2008;20:421-31. https://doi.org/10.1093/intimm/dxn002
  11. Yao Z, Kanno Y, Kerenyi M, Stephens G, Durant L, Watford WT, Laurence A, Robinson GW, Shevach EM, Moriggl R, et al. Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 2007;109:4368-75. https://doi.org/10.1182/blood-2006-11-055756
  12. Yang XP, Ghoreschi K, Steward-Tharp SM, Rodriguez-Canales J, Zhu J, Grainger JR, Hirahara K, Sun HW, Wei L, Vahedi G, et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat Immunol 2011;12:247-54. https://doi.org/10.1038/ni.1995
  13. Hwang I, Ahn G, Park E, Ha D, Song J-Y, Jee Y. An acidic polysaccharide of Panax ginseng ameliorates experimental autoimmune encephalomyelitis and induces regulatory T cells. Immunology Letters 2011;138:169-78. https://doi.org/10.1016/j.imlet.2011.04.005
  14. Oh G, Son S. Efficacy of Korean Red Ginseng in the treatment of alopecia areata. J Ginseng Res 2012;36:391-5. https://doi.org/10.5142/jgr.2012.36.4.391
  15. Zhu D, Liu M, Yang Y, Ma L, Jiang Y, Zhou L, Huang Q, Pi R, Chen X. Ginsenoside Rd ameliorates experimental autoimmune encephalomyelitis in C57BL/6 mice. J Neurosci Res 2014;92:1217-26. https://doi.org/10.1002/jnr.23397
  16. Jhun J, Lee J, Byun JK, Kim EK, Woo JW, Lee JH, Kwok SK, Ju JH, Park KS, Kim HY, et al. Red ginseng extract ameliorates autoimmune arthritis via regulation of STAT3 pathway, Th17/Treg balance, and osteoclastogenesis in mice and human. Mediators Inflamm 2014;2014:351856.
  17. Son HJ, Lee J, Lee SY, Kim EK, Park MJ, Kim KW, Park SH, Cho ML. Metformin attenuates experimental autoimmune arthritis through reciprocal regulation of Th17/Treg balance and osteoclastogenesis. Mediators Inflamm 2014;2014:973986.
  18. Jiang S, Herrera O, Lechler RI. New spectrum of allorecognition pathways: implications for graft rejection and transplantation tolerance. Curr Opin Immunol 2004;16:550-7. https://doi.org/10.1016/j.coi.2004.07.011
  19. D'Elios MM, Josien R, Manghetti M, Amedei A, de Carli M, Cuturi MC, Blancho G, Buzelin F, del Prete G, Soulillou JP. Predominant Th1 cell infiltration in acute rejection episodes of human kidney grafts. Kidney Int 1997;51:1876-84. https://doi.org/10.1038/ki.1997.256
  20. Lee EJ, Ko E, Lee J, Rho S, Ko S, Shin MK, Min BI, Hong MC, Kim SY, Bae H. Ginsenoside Rg1 enhances CD4(+) T-cell activities and modulates Th1/Th2 differentiation. Int Immunopharmacol 2004;4:235-44. https://doi.org/10.1016/j.intimp.2003.12.007
  21. Son YM, Kwak CW, Lee YJ, Yang DC, Park BC, Lee WK, Han SH, Yun CH. Ginsenoside Re enhances survival of human CD4+ T cells through regulation of autophagy. Int Immunopharmacol 2010;10:626-31. https://doi.org/10.1016/j.intimp.2010.03.002
  22. Mitchell P, Afzali B, Lombardi G, Lechler RI. The T helper 17-regulatory T cell axis in transplant rejection and tolerance. Curr Opin Organ Transplant 2009;14:326-31. https://doi.org/10.1097/MOT.0b013e32832ce88e
  23. Chen Z, Laurence A, Kanno Y, Pacher-Zavisin M, Zhu BM, Tato C, Yoshimura A, Hennighausen L, O'Shea JJ. Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc Natl Acad Sci U S A 2006;103:8137-42. https://doi.org/10.1073/pnas.0600666103
  24. Durant L, Watford WT, Ramos HL, Laurence A, Vahedi G, Wei L, Takahashi H, Sun HW, Kanno Y, Powrie F, et al. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity 2010;32:605-15. https://doi.org/10.1016/j.immuni.2010.05.003
  25. Louis S, Braudeau C, Giral M, Dupont A, Moizant F, Robillard N, Moreau A, Soulillou JP, Brouard S. Contrasting CD25hiCD4+T cells/FOXP3 patterns in chronic rejection and operational drug-free tolerance. Transplantation 2006;81:398-407. https://doi.org/10.1097/01.tp.0000203166.44968.86
  26. Bocian K, Borysowski J, Wierzbicki P, Wyzgal J, Klosowska D, Bialoszewska A, Paczek L, Gorski A, Korczak-Kowalska G. Rapamycin, unlike cyclosporine A, enhances suppressive functions of in vitro-induced CD4+CD25+ Tregs. Nephrol Dial Transplant 2010;25:710-7. https://doi.org/10.1093/ndt/gfp586
  27. Sohn EH, Jang SA, Lee CH, Jang KH, Kang SC, Park HJ, Pyo S. Effects of Korean Red Ginseng extract for the treatment of atopic dermatitis-like skin lesions in mice. J Ginseng Res 2011;35:479-86. https://doi.org/10.5142/jgr.2011.35.4.479
  28. Wang L, Zhang Y, Chen J, Li S, Wang Y, Hu L, Wang L, Wu Y. Immunosuppressive effects of ginsenoside-Rd on skin allograft rejection in rats. J Surg Res 2012;176:267-74. https://doi.org/10.1016/j.jss.2011.06.038

Cited by

  1. Ginseng extract reduces tacrolimus-induced oxidative stress by modulating autophagy in pancreatic beta cells vol.97, pp.11, 2016, https://doi.org/10.1038/labinvest.2017.75
  2. T Helper Subsets: A Complex Web Crucial to Immunomodulating Herbs vol.23, pp.2, 2016, https://doi.org/10.1089/act.2017.29103.eya
  3. Role of alpha-lipoic acid in ameliorating Cyclosporine A-induced pancreatic injury in albino rats: A structural, ultrastructural, and morphometric study vol.41, pp.2, 2016, https://doi.org/10.1080/01913123.2017.1286422
  4. A Comparative Study on the Effects of Different Parts of Panax ginseng on the Immune Activity of Cyclophosphamide-Induced Immunosuppressed Mice vol.24, pp.6, 2016, https://doi.org/10.3390/molecules24061096
  5. A Critical Regulation of Th17 Cell Responses and Autoimmune Neuro-Inflammation by Ginsenoside Rg3 vol.10, pp.1, 2016, https://doi.org/10.3390/biom10010122
  6. Enhanced uronic acid content, antioxidant, and anti‐inflammatory activities of polysaccharides from ginseng fermented by Saccharomyces cerevisiae GIW‐1 vol.44, pp.11, 2020, https://doi.org/10.1111/jfpp.14885
  7. Effect of Ginsenoside Rc on the Pharmacokinetics of Mycophenolic Acid, a UGT1A9 Substrate, and its Glucuronide Metabolite in Rats vol.12, pp.2, 2021, https://doi.org/10.5478/msl.2021.12.2.53
  8. In vitro modulatory effects of ginsenoside compound K, 20(S)-protopanaxadiol and 20(S)-protopanaxatriol on uridine 5′-diphospho-glucuronosyltransferase activity and expression vol.51, pp.10, 2016, https://doi.org/10.1080/00498254.2021.1963503
  9. Differences in the chemical composition of Panax ginseng roots infected with red rust vol.283, pp.None, 2022, https://doi.org/10.1016/j.jep.2021.114610