DOI QR코드

DOI QR Code

Similarities and differences between alpha-tocopherol and gamma-tocopherol in amelioration of inflammation, oxidative stress and pre-fibrosis in hyperglycemia induced acute kidney inflammation

  • Shin, Hanna (Department of Food and Nutrition, Kyung Hee University) ;
  • Eo, Hyeyoon (Department of Food and Nutrition, Kyung Hee University) ;
  • Lim, Yunsook (Department of Food and Nutrition, Kyung Hee University)
  • Received : 2015.03.16
  • Accepted : 2015.10.22
  • Published : 2016.02.01

Abstract

BACKGROUND/OBJECTIVES: Diabetes mellitus (DM) is a major chronic disease which increases global health problems. Diabetes-induced renal damage is associated with inflammation and fibrosis. Alpha (AT) and gamma-tocopherols (GT) have shown antioxidant and anti-inflammatory effects in inflammation-mediated injuries. The primary aim of this study was to investigate effects of AT and GT supplementations on hyperglycemia induced acute kidney inflammation in alloxan induced diabetic mice with different levels of fasting blood glucose (FBG). MATERIALS/METHODS: Diabetes was induced by injection of alloxan monohydrate (150 mg/kg, i.p) in ICR mice (5.5-week-old, male) and mice were subdivided according to their FBG levels and treated with different diets for 2 weeks; CON: non-diabetic mice, m-DMC: diabetic control mice with mild FBG levels (250 mg/dl ${\leq}$ FBG ${\leq}$ 450 mg/dl), m-AT: m-DM mice fed AT supplementation (35 mg/kg diet), m-GT: m-DM mice with GT supplementation (35 mg/kg diet), s-DMC: diabetic control mice with severe FBG levels (450 mg/dl < FBG), s-AT: s-DM mice with AT supplementation, s-GT: s-DM mice with GT supplementation. RESULTS: Both AT and GT supplementations showed similar beneficial effects on $NF{\kappa}B$ associated inflammatory response (phosphorylated inhibitory kappa B-${\alpha}$, interleukin-$1{\beta}$, C-reactive protein, monocyte chemotactic protein-1) and pre-fibrosis (tumor growth factor ${\beta}$-1 and protein kinase C-II) as well as an antioxidant emzyme, heme oxygenase-1 (HO-1) in diabetic mice. On the other hands, AT and GT showed different beneficial effects on kidney weight, FBG, and oxidative stress associated makers (malondialdehyde, glutathione peroxidase, and catalase) except HO-1. In particular, GT significantly preserved kidney weight in m-DM and improved FBG levels in s-DM and malondialdehyde and catalase in m- and s-DM, while AT significantly attenuated FBG levels in m-DM and improved glutathione peroxidase in m- and s-DM. CONCLUSIONS: the results suggest that AT and GT with similarities and differences would be considered as beneficial nutrients to modulate hyperglycemia induced acute renal inflammation. Further research with careful approach is needed to confirm beneficial effects of tocopherols in diabetes with different FBG levels for clinical applications.

Keywords

References

  1. Beulens JW, Booth SL, van den Heuvel EG, Stoecklin E, Baka A, Vermeer C. The role of menaquinones (vitamin K2) in human health. Br J Nutr 2013;110:1357-68. https://doi.org/10.1017/S0007114513001013
  2. Kanwar YS, Wada J, Sun L, Xie P, Wallner EI, Chen S, Chugh S, Danesh FR. Diabetic nephropathy: mechanisms of renal disease progression. Exp Biol Med (Maywood) 2008;233:4-11. https://doi.org/10.3181/0705-MR-134
  3. Tan AL, Forbes JM, Cooper ME. AGE, RAGE, and ROS in diabetic nephropathy. Semin Nephrol 2007;27:130-43. https://doi.org/10.1016/j.semnephrol.2007.01.006
  4. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 1999;13:76-86. https://doi.org/10.1101/gad.13.1.76
  5. Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 2008;57:1446-54. https://doi.org/10.2337/db08-0057
  6. Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res 2010;106:1319-31. https://doi.org/10.1161/CIRCRESAHA.110.217117
  7. Ma RC, Tam CH, Wang Y, Luk AO, Hu C, Yang X, Lam V, Chan AW, Ho JS, Chow CC, Tong PC, Jia W, Ng MC, So WY, Chan JC. Genetic variants of the protein kinase C-beta 1 gene and development of end-stage renal disease in patients with type 2 diabetes. JAMA 2010;304:881-9. https://doi.org/10.1001/jama.2010.1191
  8. Border WA, Noble NA. TGF-beta in kidney fibrosis: a target for gene therapy. Kidney Int 1997;51:1388-96. https://doi.org/10.1038/ki.1997.190
  9. Saijo K, Mecklenbrauker I, Santana A, Leitger M, Schmedt C, Tarakhovsky A. Protein kinase C beta controls nuclear factor kappaB activation in B cells through selective regulation of the IkappaB kinase alpha. J Exp Med 2002;195:1647-52. https://doi.org/10.1084/jem.20020408
  10. Sanz AB, Sanchez-Nino MD, Ramos AM, Moreno JA, Santamaria B, Ruiz-Ortega M, Egido J, Ortiz A. NF-kappaB in renal inflammation. J Am Soc Nephrol 2010;21:1254-62. https://doi.org/10.1681/ASN.2010020218
  11. Barkett M, Gilmore TD. Control of apoptosis by Rel/NF-kappaB transcription factors. Oncogene 1999;18:6910-24. https://doi.org/10.1038/sj.onc.1203238
  12. Baeuerle PA, Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 1994;12:141-79. https://doi.org/10.1146/annurev.iy.12.040194.001041
  13. Ohga S, Shikata K, Yozai K, Okada S, Ogawa D, Usui H, Wada J, Shikata Y, Makino H. Thiazolidinedione ameliorates renal injury in experimental diabetic rats through anti-inflammatory effects mediated by inhibition of NF-kappaB activation. Am J Physiol Renal Physiol 2007;292:F1141-50. https://doi.org/10.1152/ajprenal.00288.2005
  14. Jangale NM, Devarshi PP, Dubal AA, Ghule AE, Koppikar SJ, Bodhankar SL, Chougale AD, Kulkarni MJ, Harsulkar AM. Dietary flaxseed oil and fish oil modulates expression of antioxidant and inflammatory genes with alleviation of protein glycation status and inflammation in liver of streptozotocin-nicotinamide induced diabetic rats. Food Chem 2013;141:187-95. https://doi.org/10.1016/j.foodchem.2013.03.001
  15. Gupta SK, Kumar B, Nag TC, Agrawal SS, Agrawal R, Agrawal P, Saxena R, Srivastava S. Curcumin prevents experimental diabetic retinopathy in rats through its hypoglycemic, antioxidant, and antiinflammatory mechanisms. J Ocul Pharmacol Ther 2011;27:123-30. https://doi.org/10.1089/jop.2010.0123
  16. Kim MJ, Lim Y. Protective effect of short-term genistein supplementation on the early stage in diabetes-induced renal damage. Mediators Inflamm 2013;2013:510212.
  17. Sesso HD, Buring JE, Christen WG, Kurth T, Belanger C, MacFadyen J, Bubes V, Manson JE, Glynn RJ, Gaziano JM. Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians' Health Study II randomized controlled trial. JAMA 2008;300:2123-33. https://doi.org/10.1001/jama.2008.600
  18. Shen XH, Tang QY, Huang J, Cai W. Vitamin E regulates adipocytokine expression in a rat model of dietary-induced obesity. Exp Biol Med (Maywood) 2010;235:47-51. https://doi.org/10.1258/ebm.2009.009122
  19. Ju J, Picinich SC, Yang Z, Zhao Y, Suh N, Kong AN, Yang CS. Cancer-preventive activities of tocopherols and tocotrienols. Carcinogenesis 2010;31:533-42. https://doi.org/10.1093/carcin/bgp205
  20. Wu JH, Ward NC, Indrawan AP, Almeida CA, Hodgson JM, Proudfoot JM, Puddey IB, Croft KD. Effects of alpha-tocopherol and mixed tocopherol supplementation on markers of oxidative stress and inflammation in type 2 diabetes. Clin Chem 2007;53:511-9. https://doi.org/10.1373/clinchem.2006.076992
  21. Devaraj S, Jialal I. Alpha-tocopherol decreases tumor necrosis factoralpha mRNA and protein from activated human monocytes by inhibition of 5-lipoxygenase. Free Radic Biol Med 2005;38:1212-20. https://doi.org/10.1016/j.freeradbiomed.2005.01.009
  22. Devaraj S, Jialal I. Alpha-tocopherol decreases interleukin-1 beta release from activated human monocytes by inhibition of 5-lipoxygenase. Arterioscler Thromb Vasc Biol 1999;19:1125-33. https://doi.org/10.1161/01.ATV.19.4.1125
  23. Jiang Q, Christen S, Shigenaga MK, Ames BN. gamma-tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am J Clin Nutr 2001;74:714-22. https://doi.org/10.1093/ajcn/74.6.714
  24. Campbell S, Stone W, Whaley S, Krishnan K. Development of gamma (gamma)-tocopherol as a colorectal cancer chemopreventive agent. Crit Rev Oncol Hematol 2003;47:249-59. https://doi.org/10.1016/S1040-8428(03)00042-8
  25. Jiang Q, Ames BN. Gamma-tocopherol, but not alpha-tocopherol, decreases proinflammatory eicosanoids and inflammation damage in rats. FASEB J 2003;17:816-22. https://doi.org/10.1096/fj.02-0877com
  26. Park NY, Lim Y. Short term supplementation of dietary antioxidants selectively regulates the inflammatory responses during early cutaneous wound healing in diabetic mice. Nutr Metab (Lond) 2011;8:80. https://doi.org/10.1186/1743-7075-8-80
  27. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351-8. https://doi.org/10.1016/0003-2697(79)90738-3
  28. Lee R, Galli F, Kelly FJ. ${\gamma}$ -Tocopherol metabolism and its relationship with ${\alpha}$ -Tocopherol in humans. In: Packer L, Traber MG, Kraemer K, Frei B, editors. The Antioxidant Vitamins C and E. Champaign (IL): AOCS Press; 2002. p.180-94
  29. Zhao Y, Lee MJ, Cheung C, Ju JH, Chen YK, Liu B, Hu LQ, Yang CS. Analysis of multiple metabolites of tocopherols and tocotrienols in mice and humans. J Agric Food Chem 2010;58:4844-52. https://doi.org/10.1021/jf904464u
  30. Ventura-Sobrevilla J, Boone-Villa VD, Aguilar CN, Roman-Ramos R, Vega-Avila E, Campos-Sepulveda E, Alarcon-Aguilar F. Effect of varying dose and administration of streptozotocin on blood sugar in male CD1 mice. Proc West Pharmacol Soc 2011;54:5-9.
  31. Matteucci E, Giampietro O. Proposal open for discussion: defining agreed diagnostic procedures in experimental diabetes research. J Ethnopharmacol 2008;115:163-72. https://doi.org/10.1016/j.jep.2007.08.040
  32. Kim SS, Gallaher DD, Csallany AS. Vitamin E and probucol reduce urinary lipophilic aldehydes and renal enlargement in streptozotocininduced diabetic rats. Lipids 2000;35:1225-37. https://doi.org/10.1007/s11745-000-0639-2
  33. Hosten AO. BUN and creatinine. In: Walker HK, Hall WD, Hurst JW, editors. Clinical Methods: the History, Physical, and Laboratory Examinations. 3rd ed. Boston (MA): Butterworths; 1990. p. 874-8.
  34. Haidara MA, Mikhailidis DP, Rateb MA, Ahmed ZA, Yassin HZ, Ibrahim IM, Rashed LA. Evaluation of the effect of oxidative stress and vitamin E supplementation on renal function in rats with streptozotocin-induced Type 1 diabetes. J Diabetes Complications 2009;23:130-6. https://doi.org/10.1016/j.jdiacomp.2008.02.011
  35. Chang JM, Kuo MC, Kuo HT, Chiu YW, Chen HC. Increased glomerular and extracellular malondialdehyde levels in patients and rats with diabetic nephropathy. J Lab Clin Med 2005;146:210-5. https://doi.org/10.1016/j.lab.2005.05.007
  36. Salahudeen AK, Kanji V, Reckelhoff JF, Schmidt AM. Pathogenesis of diabetic nephropathy: a radical approach. Nephrol Dial Transplant 1997;12:664-8. https://doi.org/10.1093/ndt/12.4.664
  37. Baydas G, Canatan H, Turkoglu A. Comparative analysis of the protective effects of melatonin and vitamin E on streptozocininduced diabetes mellitus. J Pineal Res 2002;32:225-30. https://doi.org/10.1034/j.1600-079X.2002.01856.x
  38. Tanaka Y, Maher JM, Chen C, Klaassen CD. Hepatic ischemiareperfusion induces renal heme oxygenase-1 via NF-E2-related factor 2 in rats and mice. Mol Pharmacol 2007;71:817-25.
  39. Negre-Salvayre A, Salvayre R, Auge N, Pamplona R, Portero-Otin M. Hyperglycemia and glycation in diabetic complications. Antioxid Redox Signal 2009;11:3071-109. https://doi.org/10.1089/ars.2009.2484
  40. Das J, Vasan V, Sil PC. Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis. Toxicol Appl Pharmacol 2012;258:296-308. https://doi.org/10.1016/j.taap.2011.11.009
  41. Ribeiro G, Roehrs M, Bairros A, Moro A, Charao M, Araujo F, Valentini J, Arbo M, Brucker N, Moresco R, Leal M, Morsch V, Garcia SC. N-acetylcysteine on oxidative damage in diabetic rats. Drug Chem Toxicol 2011;34:467-74. https://doi.org/10.3109/01480545.2011.564179
  42. Piwkowska A, Rogacka D, Audzeyenka I, Jankowski M, Angielski S. High glucose concentration affects the oxidant-antioxidant balance in cultured mouse podocytes. J Cell Biochem 2011;112:1661-72. https://doi.org/10.1002/jcb.23088
  43. Yoo JH, Erzurum SC, Hay JG, Lemarchand P, Crystal RG. Vulnerability of the human airway epithelium to hyperoxia. Constitutive expression of the catalase gene in human bronchial epithelial cells despite oxidant stress. J Clin Invest 1994;93:297-302. https://doi.org/10.1172/JCI116959
  44. Kobayashi M, Sugiyama H, Wang DH, Toda N, Maeshima Y, Yamasaki Y, Masuoka N, Yamada M, Kira S, Makino H. Catalase deficiency renders remnant kidneys more susceptible to oxidant tissue injury and renal fibrosis in mice. Kidney Int 2005;68:1018-31. https://doi.org/10.1111/j.1523-1755.2005.00494.x
  45. Baud O, Greene AE, Li J, Wang H, Volpe JJ, Rosenberg PA. Glutathione peroxidase-catalase cooperativity is required for resistance to hydrogen peroxide by mature rat oligodendrocytes. J Neurosci 2004;24:1531-40. https://doi.org/10.1523/JNEUROSCI.3989-03.2004
  46. Mohamed AK, Bierhaus A, Schiekofer S, Tritschler H, Ziegler R, Nawroth PP. The role of oxidative stress and NF-kappaB activation in late diabetic complications. Biofactors 1999;10:157-67. https://doi.org/10.1002/biof.5520100211
  47. Kolb M, Margetts PJ, Anthony DC, Pitossi F, Gauldie J. Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Invest 2001;107:1529-36. https://doi.org/10.1172/JCI12568
  48. Dinarello CA. Interleukin-1. Cytokine Growth Factor Rev 1997;8: 253-65. https://doi.org/10.1016/S1359-6101(97)00023-3
  49. Navarro-Gonzalez JF, Mora-Fernandez C. The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol 2008;19: 433-42. https://doi.org/10.1681/ASN.2007091048
  50. Barzilay JI, Abraham L, Heckbert SR, Cushman M, Kuller LH, Resnick HE, Tracy RP. The relation of markers of inflammation to the development of glucose disorders in the elderly: the Cardiovascular Health Study. Diabetes 2001;50:2384-9. https://doi.org/10.2337/diabetes.50.10.2384
  51. Eklund CM. Proinflammatory cytokines in CRP baseline regulation. Adv Clin Chem 2009;48:111-36.
  52. Himmelfarb J, Kane J, McMonagle E, Zaltas E, Bobzin S, Boddupalli S, Phinney S, Miller G. Alpha and gamma tocopherol metabolism in healthy subjects and patients with end-stage renal disease. Kidney Int 2003;64:978-91. https://doi.org/10.1046/j.1523-1755.2003.00151.x
  53. Sharma K, Ziyadeh FN. Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-beta as a key mediator. Diabetes 1995;44:1139-46.
  54. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010;107:1058-70. https://doi.org/10.1161/CIRCRESAHA.110.223545
  55. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414:813-20. https://doi.org/10.1038/414813a
  56. Koya D, Jirousek MR, Lin YW, Ishii H, Kuboki K, King GL. Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J Clin Invest 1997;100:115-26. https://doi.org/10.1172/JCI119503
  57. Meier M, Park JK, Overheu D, Kirsch T, Lindschau C, Gueler F, Leitges M, Menne J, Haller H. Deletion of protein kinase C-beta isoform in vivo reduces renal hypertrophy but not albuminuria in the streptozotocin-induced diabetic mouse model. Diabetes 2007;56: 346-54. https://doi.org/10.2337/db06-0891
  58. Chen S, Jim B, Ziyadeh FN. Diabetic nephropathy and transforming growth factor-beta: transforming our view of glomerulosclerosis and fibrosis build-up. Semin Nephrol 2003;23:532-43. https://doi.org/10.1053/S0270-9295(03)00132-3
  59. Sharma K, Jin Y, Guo J, Ziyadeh FN. Neutralization of TGF-beta by anti-TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes 1996;45:522-30. https://doi.org/10.2337/diab.45.4.522
  60. Border WA, Noble NA. Evidence that TGF-beta should be a therapeutic target in diabetic nephropathy. Kidney Int 1998;54:1390-1. https://doi.org/10.1046/j.1523-1755.1998.00127.x

Cited by

  1. Gamma-tocopherol supplementation ameliorated hyper-inflammatory response during the early cutaneous wound healing in alloxan-induced diabetic mice vol.242, pp.5, 2017, https://doi.org/10.1177/1535370216683836
  2. Chemical composition and nutraceutical properties of hempseed: an ancient food with actual functional value vol.17, pp.4, 2018, https://doi.org/10.1007/s11101-018-9556-2
  3. Gamma-tocopherol ameliorates hyperglycemia-induced hepatic inflammation associated with NLRP3 inflammasome in alloxan-induced diabetic mice vol.13, pp.5, 2019, https://doi.org/10.4162/nrp.2019.13.5.377
  4. A light microscopic investigation of the renoprotective effects of α-lipoic acid and α-tocopherol in an experimental diabetic rat model vol.95, pp.4, 2020, https://doi.org/10.1080/10520295.2019.1695942
  5. A Fast and Efficient Ultrasound-Assisted Extraction of Tocopherols in Cow Milk Followed by HPLC Determination vol.26, pp.15, 2021, https://doi.org/10.3390/molecules26154645