DOI QR코드

DOI QR Code

High Performance Thin-Film Transistors Based on Zinc Oxynitride Semiconductors: Experimental and First-Principles Studies

  • Kim, Yang-Soo (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Jong Heon (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyun-Suk (Department of Materials Science and Engineering, Chungnam National University)
  • Received : 2015.11.04
  • Accepted : 2015.12.22
  • Published : 2016.01.27

Abstract

The properties of zinc oxynitride semiconductors and their associated thin film transistors are studied. Reactively sputtered zinc oxynitride films exhibit n-type conduction, and nitrogen-rich compositions result in relatively high electron mobility. Nitrogen vacancies are anticipated to act as shallow electron donors, as their calculated formation energy is lowest among the possible types of point defects. The carrier density can be reduced by substituting zinc with metals such as gallium or aluminum, which form stronger bonds with nitrogen than zinc does. The electrical properties of gallium-doped zinc oxynitride thin films and their respective devices demonstrate the carrier suppression effect accordingly.

Keywords

References

  1. H. Hosono, J. Non-Cryst. Solids, 352, 851 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.01.073
  2. T. Kamiya, K. Nomura and H. Hosono, Sci. Technol. Adv. Mater., 11, 044305 (2010). https://doi.org/10.1088/1468-6996/11/4/044305
  3. J. S. Park, W.-J. Maeng, H.-S. Kim and J.-S. Park, Thin Solid Films, 520, 1679 (2012). https://doi.org/10.1016/j.tsf.2011.07.018
  4. Y. Ye, R. Lim and J. M. White, J. Appl. Phys., 106, 074512 (2009). https://doi.org/10.1063/1.3236663
  5. H.-S. Kim, S. H. Jeon, J. S. Park, T. S. Kim, K. S. Son, J.-B. Seon, S.-J. Seo, S.-J. Kim, E. Lee, J. G. Chung, H. Lee, S. Han, M. Ryu, S. Y. Lee and K. Kim, Sci. Rep., 3, 1459 (2013). https://doi.org/10.1038/srep01459
  6. K.-C. Ok, H.-J. Jeong, H.-S. Kim and J.-S. Park, IEEE Electron Device Lett., 36, 38 (2015). https://doi.org/10.1109/LED.2014.2365614
  7. K.-C. Ok, H.-J. Jeong, H.-M. Lee, J. Park and J.-S. Park, Ceram. Int., 41, 13281 (2015). https://doi.org/10.1016/j.ceramint.2015.07.110
  8. J. T. Jang, J. Park, B. D. Ahn, D. M. Kim, S.-J. Choi, H.-S. Kim and D. H. Kim, ACS Appl. Mater. Interfaces, 7, 15570 (2015) https://doi.org/10.1021/acsami.5b04152
  9. S. Lee, A. Nathan, Y. Ye, Y. Guo and J. Robertson, Sci. Rep., 5, 13467 (2015). https://doi.org/10.1038/srep13467
  10. G. Kresse and J. Furthmuller, Matter Mater. Phys., 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
  11. G. Kresse and J. Joubert, Matter Mater. Phys., 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
  12. P. E. Blochl, Matter Mater. Phys., 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
  13. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  14. Y. Kang, S. H. Jeon, Y.-W. Son, Y.-S. Lee, M. Ryu, S. Lee and S. Han, Phys. Rev. Lett., 108, 196404 (2012). https://doi.org/10.1103/PhysRevLett.108.196404
  15. T. L. Tansley and R. J. Egan, Matter Mater. Phys., 45, 10942 (1992). https://doi.org/10.1103/PhysRevB.45.10942
  16. M. G. Ganchenkova and R. M. Nieminen, Phys. Rev. Lett., 96, 196402 (2008).
  17. R. Long, Y. Dai, L. Yu, B. Huang and S. Han, Thin Solid Films, 516, 1297 (2008). https://doi.org/10.1016/j.tsf.2007.06.107
  18. J. H. Jeong, H. W. Yang, J.-S. Park, J. K. Jeong, Y.-G. Mo, H. D. Kim, J. Song and C. S. Hwang, Electrochem. Solid-State Lett., 11, H157 (2008). https://doi.org/10.1149/1.2903209
  19. J. S. Park, T. S. Kim, K. S. Son, W.-J. Maeng, H.-S. Kim, M. Ryu and S. Y. Lee, Appl. Phys. Lett., 98, 012107 (2011). https://doi.org/10.1063/1.3536479