
Commun. Korean Math. Soc. 31 (2016), No. 1, pp. 1–16
http://dx.doi.org/10.4134/CKMS.2016.31.1.001

A NOTE ON THE MODIFIED k-FIBONACCI-LIKE

SEQUENCE

Youngwoo Kwon

Abstract. The Fibonacci sequence is a sequence of numbers that has
been studied for hundreds of years. In this paper, we introduce the modi-
fied k-Fibonacci-like sequence and prove Binet’s formula for this sequence
and then use it to introduce and prove the Catalan, Cassini, and d’Ocagne
identities for the modified k-Fibonacci-like sequence. Also, the ordinary
generating function of this sequence is stated.

1. Introduction

The Fibonacci sequence {Fn} is defined by the recurrence relation

(1) Fn = Fn−1 + Fn−2 for n ≥ 2

with F0 = 0 and F1 = 1.
Many authors have studied the Fibonacci sequence, some of whom intro-

duced new sequences related to it as well as proving many identities for them.
Falcón and Plaza [6] introduced the k-Fibonacci sequence and proved some

related identities. For any real number k, the k-Fibonacci sequence {Fk,n}n∈N

is defined by the recurrence relation

(2) Fk,n = kFk,n−1 + Fk,n−2 for n ≥ 2

with Fk,0 = 0 and Fk,1 = 1.
Edson and Yayenie [4] introduced the generalized Fibonacci sequence and

proved some related identities. For any two nonzero real numbers a and b, the
generalized Fibonacci sequence {qn}

∞
n=0 is defined by the recurrence relation

(3) qn =

{

aqn−1 + qn−2, if n is even,
bqn−1 + qn−2, if n is odd,

(n ≥ 2),

with q0 = 0 and q1 = 1.
Edson, Lewis and Yayenie [3] introduced the k-periodic Fibonacci sequence

and proved some related identities. For any k-tuple (x1, x2, . . . , xk) ∈ Z
k, the
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k-periodic Fibonacci sequence {qn} is defined by the recurrence relation

(4) qn =



























x1qn−1 + qn−2, if n ≡ 2 (mod k)
x2qn−1 + qn−2, if n ≡ 3 (mod k)
...
xk−1qn−1 + qn−2, if n ≡ 0 (mod k)
xkqn−1 + qn−2, if n ≡ 1 (mod k)

(n ≥ 2)

with q0 = 0 and q1 = 1.
Some authors introduced various Fibonacci-like sequences:
Singh, Sikhwal and Bhatnagar [11] introduced the Fibonacci-like sequence

and proved several related identities. The Fibonacci-like sequence {Sn} is de-
fined by the recurrence relation

(5) Sn = Sn−1 + Sn−2 for n ≥ 2

with S0 = 2 and S1 = 2.
Badshah, Teeth and Dar [1] introduced a generalized Fibonacci-like sequence

and proved some related identities. Their generalized Fibonacci-like sequence
{Mn} is defined by the recurrence relation

(6) Mn = Mn−1 +Mn−2 for n ≥ 2

with M0 = 2m and M1 = 1+m, m being a fixed positive integer.
Harne, Singh and Pal [7] introduced another generalized Fibonacci-like se-

quence and proved some related identities. Their generalized Fibonacci-like
sequence {Dn} is defined by the recurrence relation

(7) Dn = Dn−1 +Dn−2 for n ≥ 2

with D0 = 2 and D1 = 1 +m, m being a fixed positive integer.
Finally, Panwar, Rathore and Chawla [9] introduced the k-Fibonacci-like

sequence and proved some related identities. For any positive real number k,
the k-Fibonacci-like sequence {Sk,n} is defined by the recurrence relation

(8) Sk,n = kSk,n−1 + Sk,n−2 for n ≥ 2

with Sk,0 = 2 and Sk,1 = 2k.
Furthermore, the above authors utilize Binet’s formula, a well-known tool for

proving various identities. Thus, when authors study a new sequence related
to the Fibonacci sequence, they always introduce Binet’s formula for each se-
quence. As you know, most of identities for each sequence is that the left-hand
side of equation is expressed using itself. For example, the Catalan identity of
the k-Fibonacci sequence is

Fk,n−rFk,n+r − F 2
k,n = (−1)n+1−rF 2

k,r ,

where Fk,n is the k-Fibonacci sequence.
In this paper, we introduce the modified k-Fibonacci-like sequence and prove

Binet’s formula for the modified k-Fibonacci-like sequence. And then using it,
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we prove the Catalan, Cassini, and d’Ocagne identities for this sequence. More-
over, we introduce the special sums of the modified k-Fibonacci-like sequence
and prove them using Binet’s formula.

In Section 2, we will introduce the modified k-Fibonacci-like sequence and
related facts.

In Section 3, we will introduce and prove Binet’s formula of the modified
k-Fibonacci-like sequence.

In Section 4, we will introduce the Catalan, Cassini, and d’Ocagne identities
for the modified k-Fibonacci-like sequence. In these identities, we can find
that the left-hand side of equation is expressed using the k-Fibonacci sequence.
Moreover, we will prove them using Binet’s formula. We will also introduce
and prove the sums of the modified k-Fibonacci-like sequence.

In Section 5, we will find the generating function of the modified k-Fibonacci-
like sequence.

In Section 6, we will generalize the modified k-Fibonacci-like sequence for
Sk,0 = Sk,1 = a, where a is an integer.

2. Preliminaries

In this section, we review basic definitions and introduce relevant facts.

Definition (The k-Fibonacci sequence [6]). For any positive real number k,
the k-Fibonacci sequence {Fk,n} is defined by the recurrence relation

Fk,n = kFk,n−1 + Fk,n−2 for n ≥ 2

with Fk,0 = 0 and Fk,1 = 1.

A few k-Fibonacci numbers are

Fk,2 = k, Fk,3 = k2 + 1, Fk,4 = k3 + 2k, Fk,5 = k4 + 3k2 + 1, . . . .

Theorem 2.1 (Binet’s formula for the k-Fibonacci sequence [6]). The nth

k-Fibonacci number is given by

(9) Fk,n =
αn − βn

α− β
,

where α, β are the roots of the characteristic equation x2 − kx − 1 = 0, and
α > β.

Definition (The k-Lucas sequence [5]). For any positive real number k, the
k-Lucas sequence {Lk,n} is defined by the recurrence relation

Lk,n = kLk,n−1 + Lk,n−2 for n ≥ 2

with Lk,0 = 2 and Lk,1 = k.

A few k-Lucas numbers are

Lk,2 = k2 + 2, Lk,3 = k3 + 3k, Lk,4 = k4 + 4k2 + 2, . . . .
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Theorem 2.2 (Binet’s formula for the k-Lucas sequence [5]). The k-Lucas

numbers are given by the formula

(10) Lk,n = αn + βn,

where α, β are the roots of the characteristic equation x2 − kx − 1 = 0, and
α > β.

Now, we will introduce the new sequence, called the modified k-Fibonacci-
like sequence. This sequence contains features both of the k-Fibonacci sequence
and the Fibonacci-like sequence.

Definition (The modified k-Fibonacci-like sequence). For any positive real
number k, the modified k-Fibonacci-like sequence {Mk,n} is defined by the
recurrence relation

Mk,n = kMk,n−1 +Mk,n−2 for n ≥ 2

with Mk,0 = 2 and Mk,1 = 2.

The first few modified k-Fibonacci-like numbers are

Mk,2 = 2k + 2,

Mk,3 = 2k2 + 2k + 2,

Mk,4 = 2k3 + 2k2 + 4k + 2,

Mk,5 = 2k4 + 2k3 + 6k2 + 4k + 2,

Mk,6 = 2k5 + 2k4 + 8k3 + 6k2 + 6k + 2.

Example 2.3 (Case k = 1). We obtain

M1,0 = 2,M1,1 = 2, and M1,n = M1,n−1 +M1,n−2 for n ≥ 2 :

{M1,n}n∈N = {2, 2, 4, 6, 10, 16, . . .}.

This sequence is the Fibonacci-like sequence in [11].

Example 2.4 (Case k = 2). We obtain

M2,0 = 2,M2,1 = 2, and M2,n = 2M2,n−1 +M2,n−2 for n ≥ 2 :

{M2,n}n∈N = {2, 2, 6, 14, 34, 82, . . .}.

Example 2.5 (Case k = 1
2 ). We obtain

M 1

2
,0 = 2,M 1

2
,1 = 2, and M 1

2
,n =

1

2
M 1

2
,n−1 +M 1

2
,n−2 for n ≥ 2 :

{M 1

2
,n}n∈N =

{

2, 2, 3,
7

2
,
19

4
,
47

8
, . . .

}

.
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3. Binet’s formula of the modified k-Fibonacci-like sequence

Binet’s formulae are well known in the study of sequences like Fibonacci
sequence [1, 2, 3, 4, 6, 7, 8, 10, 11, 12]. In this section, we introduce and prove
Binet’s formula for the modified k-Fibonacci-like sequence. Binet’s formula
of the modified k-Fibonacci-like sequence allows us to express the modified
k-Fibonacci-like sequence in terms of the roots α and β of the characteristic
equation, x2 − kx − 1 = 0 (α > β). The roots of the characteristic equation

are α = k+
√
k2+4
2 and β = k−

√
k2+4
2 . Note that β < 0 < α, α + β = k and

αβ = −1.
In this paper, Binet’s formula for the modified k-Fibonacci-like sequence is

the following:

Theorem 3.1 (Binet’s formula). The nth modified k-Fibonacci-like number

Mk,n is given by

(11) Mk,n = 2

(

αn − βn

α− β
+

αn−1 − βn−1

α− β

)

.

Proof. The general term of the modified k-Fibonacci-like sequence may be ex-
pressed in the form, Mk,n = C1α

n + C2β
n for some coefficients C1 and C2.

(1) Mk,0 = C1 + C2 = 2,
(2) Mk,1 = C1α+ C2β = 2.

Then

C1 =
2− 2β

α− β
, C2 =

2α− 2

α− β
.

Therefore,

Mk,n =
2− 2β

α− β
αn +

2α− 2

α− β
βn = 2

(

αn − βn

α− β
+

αn−1 − βn−1

α− β

)

.
�

Note that

Mk,2 = 2

(

α2 − β2

α− β
+

α1 − β1

α− β

)

= 2k + 2,

Mk,3 = 2

(

α3 − β3

α− β
+

α2 − β2

α− β

)

= 2k2 + 2k + 2,

Mk,4 = 2

(

α4 − β4

α− β
+

α3 − β3

α− β

)

= 2k3 + 2k2 + 4k + 2.

Note that Mk,n = 2(Fk,n +Fk,n−1), where Fk,n is the k-Fibonacci sequence.

• If k = 1,

M1,n = 2(F1,n + F1,n−1) = 2F1,n+1 = 2
αn+1 − βn+1

α− β
.
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• If k = 2,

M2,n = 2(F2,n + F2,n−1)

= (2F2,n + F2,n−1) + F2,n−1

= F2,n+1 + F2,n−1

= L2,n,where L2,n is the 2-Lucas sequence.

Also, we can express the nth k-Fibonacci number Fk,n as follows:

Theorem 3.2.

(12) Fk,n =
1

2

n−1
∑

i=0

Mk,n−i(−1)i.

Proof. By the note of Binet’s formula,

Fk,n =
Mk,n

2
− Fk,n−1.

Then, inductively and using the fact that Fk,0 = 0, we have

Fk,n =
Mk,n

2
− Fk,n−1

=
Mk,n

2
−

(

Mk,n−1

2
− Fk,n−2

)

=
Mk,n

2
−

Mk,n−1

2
+ Fk,n−2

=
Mk,n

2
−

Mk,n−1

2
+

(

Mk,n−2

2
− Fk,n−3

)

= · · ·

=
1

2

(

Mk,n −Mk,n−1 +Mk,n−2 −Mk,n−3 + · · ·+ (−1)n−1Mk,1

)

+ (−1)nFk,0

=
1

2

n−1
∑

i=0

Mk,n−i(−1)i.
�

4. Identities of the modified k-Fibonacci-like sequence

Many authors who study sequences like Fibonacci sequence have introduced
special identities, such as the Catalan, Cassini, and d’Ocagne identities [2, 4,
6, 10, 12]. They have then proved them using Binet’s formula for each identity.

In this section, we also introduce the Catalan, Cassini, and d’Ocagne iden-
tities for the modified k-Fibonacci-like sequence, and prove them using Binet’s
formula stated in the previous section. In addition, we introduce and prove the
sums of the modified k-Fibonacci-like sequence using Binet’s formula.
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4.1. The Catalan identity

Many authors have expressed the Catalan identity as the following:

• Fn−rFn+r − F 2
n = (−1)n+1−rF 2

r , where Fn is the Fibonacci sequence
[2].

• Fk,n−rFk,n+r − F 2
k,n = (−1)n+1−rF 2

k,r , where Fk,n is the k-Fibonacci

sequence [2, 6].
• aξ(n−r)b1−ξ(n−r)qn−rqn+r − aξ(n)b1−ξ(n)q2n = aξ(r)b1−ξ(r)(−1)n+1−rq2r ,
where qn is the generalized Fibonacci sequence [4].

As we can see, the left-hand side of each equation is expressed using itself.
However, in the modified k-Fibonacci-like sequence, Mk,n−rMk,n+r −M2

k,n

is expressed using the k-Fibonacci sequence Fk,r .

Theorem 4.1 (the Catalan identity). For any two nonnegative integers n and

r with n ≥ r, we have

(13) Mk,n−rMk,n+r −M2
k,n = 4k(−1)n−rF 2

k,r,

where Fk,r is the k-Fibonacci sequence.

Proof. Note that α+ β = k, αβ = −1. By Binet’s formula, we have

Mk,n−rMk,n+r −M2
k,n

=
22

(α− β)2
[

(αn−r − βn−r + αn−r−1 − βn−r−1)

×(αn+r − βn+r + αn+r−1 − βn+r−1)− (αn − βn + αn−1 − βn−1)2
]

=
22

(α− β)2

[(

αn−r
(

1 + 1
α

)

− βn−r
(

1 + 1
β

))(

αn+r
(

1 + 1
α

)

− βn+r
(

1 + 1
β

))

−
(

αn
(

1 + 1
α

)

− βn
(

1 + 1
β

))2
]

=
22

(α− β)2

[

α2n
(

1 + 1
α

)2
−
(

αn−rβn+r + αn+rβn−r
) (

1 + 1
α

)

(

1 + 1
β

)

+β2n
(

1 + 1
β

)2

−

(

α2n
(

1 + 1
α

)2
−2αnβn

(

1 + 1
α

)

(

1 + 1
β

)

+β2n
(

1 + 1
β

)2
)]

=
22

(α− β)2
(

−αn−rβn+r − αn+rβn−r + 2αnβn
) (

1 + 1
α

)

(

1 + 1
β

)

=
−22(αβ)n

(α − β)2

[(

β
α

)r

+
(

α
β

)r

− 2
] (

1 + 1
α
+ 1

β
+ 1

αβ

)

=
4(−1)n+1

(α− β)2

[

α2r−2αrβr+β2r

(αβ)r

] (

1
α
+ 1

β

)

=
4(−1)n−r+1

(α− β)2
(αr − βr)2 α+β

αβ
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= 4k(−1)n−r

(

αr − βr

α− β

)2

= 4k(−1)n−rF 2
k,r . �

Remark 4.2. We can express the left-hand side using itself. Using Theorem
3.2,

(14) Mk,n−rMk,n+r −M2
k,n = k(−1)n−r

(

r−1
∑

i=0

Mk,r−i(−1)i

)2

.

4.2. The Cassini identity

The Cassini identity is a special case of the Catalan identity with r = 1.
Many authors have expressed the Cassini identity as the following:

• Fn−1Fn+1 − F 2
n = (−1)n, where Fn is the Fibonacci sequence [2].

• Fk,n−1Fk,n+1 − F 2
k,n = (−1)n, where Fk,n is the k-Fibonacci sequence

[2, 6].
• aξ(n−1)b1−ξ(n−1)qn−1qn+1 − aξ(n)b1−ξ(n)q2n = a(−1)n, where qn is the
generalized Fibonacci sequence [4].

Similarly, the Cassini identity for the modified k-Fibonacci-like sequence is the
following:

Theorem 4.3 (the Cassini identity). For any nonnegative integer n, we have

(15) Mk,n−1Mk,n+1 −M2
k,n = 4k(−1)n−1.

Proof. Taking r = 1 in the Catalan identity, we get

Mk,n−1Mk,n+1 −M2
k,n = 4k(−1)n−1F 2

k,1 = 4k(−1)n−1,

since Fk,1 = 1. �

4.3. The d’Ocagne identity

The d’Ocagne identity is similar to the Catalan identity. Many authors have
expressed the d’Ocagne identity as the following:

• FmFn+1−Fm+1Fn = (−1)nFm−n, where Fn is the Fibonacci sequence
[2].

• Fk,mFk,n+1−Fk,m+1Fk,n=(−1)nFk,m−n, where Fk,n is the k-Fibonacci
sequence [2, 6].

•

aξ(mn+m)bξ(mn+n)qmqn+1 − aξ(mn+n)bξ(mn+m)qm+1qn

= (−1)naξ(m−n)qm−n,

where qn is the generalized Fibonacci sequence [4].

Once more, the left-hand side of each equation is expressed using itself.
However, in the modified k-Fibonacci-like sequence, the d’Ocagne identity

is expressed using the k-Fibonacci sequence similar to the Catalan identity.
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Theorem 4.4 (the d’Ocagne identity). For any two nonnegative integers m

and n with m ≥ n, we have

(16) Mk,mMk,n+1 −Mk,m+1Mk,n = 4k(−1)n−1Fk,m−n,

where Fk,n is the k-Fibonacci number.

Proof. We check each term on left-hand side using Binet’s formula, and then
we prove the theorem.

(i) First, we check Mk,mMk,n+1.

Mk,mMk,n+1

=
22

(α − β)2
(αm − βm + αm−1 − βm−1)(αn+1 − βn+1 + αn − βn)

=
22

(α − β)2

(

αm
(

1 + 1
α

)

− βm
(

1 + 1
β

))(

αn+1
(

1 + 1
α

)

− βn+1
(

1 + 1
β

))

=
22

(α − β)2

[

αm+n+1
(

1 + 1
α

)2
− (αmβn+1 + αn+1βm)

(

1 + 1
α

)

(

1 + 1
β

)

+βm+n+1
(

1 + 1
β

)2
]

.

(ii) Second, we check Mk,m+1Mk,n.

Mk,m+1Mk,n

=
22

(α− β)2
(αm+1 − βm+1 + αm − βm)(αn − βn + αn−1 − βn−1)

=
22

(α− β)2

[(

αm+1
(

1 + 1
α

)

− βm+1
(

1 + 1
β

))(

αn
(

1 + 1
α

)

− βn
(

1 + 1
β

))]

=
22

(α− β)2

[

αm+n+1
(

1 + 1
α

)2
− (αm+1βn + αnβm+1)

(

1 + 1
α

)

(

1 + 1
β

)

+βm+n+1
(

1 + 1
β

)2
]

.

Therefore,

Mk,mMk,n+1 −Mk,m+1Mk,n

=
22

(α− β)2
[

(αm+1βn + αnβm+1)− (αmβn+1 + αn+1βm)
] (

1 + 1
α

)

(

1 + 1
β

)

=
22(αβ)n

(α− β)2
[

(αm−n+1 + βm−n+1)− (αm−nβ + αβm−n)
]

(

1 + 1
α
+ 1

β
+ 1

αβ

)

=
22(−1)n

(α− β)2
[

(αm−n+1 − αβm−n) + (βm−n+1 − αm−nβ)
]

(

1
α
+ 1

β

)

=
22(−1)n

(α− β)2
[

α(αm−n − βm−n)− β(αm−n − βm−n)
]

(

α+β
−1

)
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=
22(−1)n−1

(α− β)2
(αm−n − βm−n)(α− β)(α + β)

= 22k(−1)n−1α
m−n − βm−n

α− β

= 4k(−1)n−1Fk,m−n. �

Remark 4.5. Similarly, we can express the left-hand side using itself. Using
Theorem 3.2,

(17) Mk,mMk,n+1 −Mk,m+1Mk,n = 2k

m−n−1
∑

i=0

Mk,m−n−i(−1)n+i−1.

4.4. The sums of the modified k-Fibonacci-like sequence

Binet’s formula allows us to express the sum of the first n terms of the
modified k-Fibonacci-like sequence.

Theorem 4.6. The sum of first n terms of the modified k-Fibonacci-like se-

quence {Mk,n} is

(18) Mk,1 +Mk,2 + · · ·+Mk,n =

n
∑

i=1

Mk,i =
1

k
(Mk,n+1 +Mk,n)−

4

k
.

Proof. Note that α+ β = k, αβ = −1 and (α− 1)(β − 1) = −k.
By Binet’s formula, we have

n
∑

i=1

Mk,i =
2

α− β

n
∑

i=1

(αi − βi + αi−1 − βi−1).

By summing up the geometric partial sums, we have
n
∑

i=1

Mk,i =
2

α− β

[

α(αn − 1)

α− 1
−

β(βn − 1)

β − 1
+

αn − 1

α− 1
−

βn − 1

β − 1

]

.

Then, using the above note, we have
n
∑

i=1

Mk,i

=
2

(α− β)(α − 1)(β − 1)
[α(αn − 1)(β − 1)− β(βn − 1)(α− 1)

+(αn − 1)(β − 1)− (βn − 1)(α− 1)]

=
2

−k(α− β)

[

(αn+1β − αn+1 − αβ + α)− (αβn+1 − βn+1 − αβ + β)

+(αnβ − αn − β + 1)− (αβn − βn − α+ 1)]

=
2

−k(α− β)

[

(αβ)(αn − βn)− (αn+1 − βn+1) + (α − β)

+(αβ)(αn−1 − βn−1)− (αn − βn) + (α − β)
]
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=
2

−k(α− β)

[

−(αn − βn)− (αn+1 − βn+1) + (α− β)− (αn−1 − βn−1)

−(αn − βn) + (α − β)]

=
2

k(α− β)

[

(αn+1 − βn+1 + αn − βn) + (αn − βn + αn−1 − βn−1)

−2(α− β)]

=
1

k

[

2
αn+1 − βn+1 + αn − βn

α− β
+ 2

αn − βn + αn−1 − βn−1

α− β
− 4

]

=
1

k
(Mk,n+1 +Mk,n)−

4

k
.

�

Note that from Theorem 4.6,
n
∑

i=0

Mk,i =
n
∑

i=1

Mk,i +Mk,0 =
1

k
(Mk,n+1 +Mk,n)−

4

k
+ 2.

Theorem 4.7. The sum of the first n terms with odd indices is

(19) Mk,1+Mk,3+· · ·+Mk,2n−1 =

n
∑

i=1

Mk,2i−1 =
1

k2
(Mk,2n+1−Mk,2n−1)−

2

k
.

Proof. Note that (α2 − 1)(β2 − 1) = −k2.
By Binet’s formula, we have

n
∑

i=1

Mk,2i−1 =
2

α− β

n
∑

i=1

(

α2i−1 − β2i−1 + α2i−2 − β2i−2
)

.

By summing up the geometric partial sums, we have
n
∑

i=1

Mk,2i−1 =
2

α− β

[

α(α2n − 1)

α2 − 1
−

β(β2n − 1)

β2 − 1
+

α2n − 1

α2 − 1
−

β2n − 1

β2 − 1

]

.

Then, using the above note, we have
n
∑

i=1

Mk,2i−1

=
−2

k2(α − β)

[

(α2n+1β2 − α2n+1 − αβ2 + α) − (α2β2n+1 − β2n+1 − α2β + β)

+(α2nβ2 − α2n − β2 + 1)− (α2β2n − β2n − α2 + 1)
]

=
−2

k2(α − β)

[

(αβ)2(α2n−1 − β2n−1)− (α2n+1 − β2n+1) + (αβ)(α − β)

+(α− β) + (αβ)2(α2n−2 − β2n−2)− (α2n − β2n) + (α2 − β2)
]

=
−2

k2(α − β)

[

(α2n−1 − β2n−1 + α2n−2 − β2n−2)

−(α2n+1 − β2n+1 + α2n − β2n) + (α2 − β2)
]
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=
1

k2
(Mk,2n+1 −Mk,2n−1)−

2

k
.

�

Theorem 4.8. The sum of the first n terms with even indices is

(20) Mk,2 +Mk,4 + · · ·+Mk,2n =

n
∑

i=1

Mk,2i =
1

k2
(Mk,2n+2 −Mk,2n)−

2

k
.

Proof. By Binet’s formula, we have
n
∑

i=1

Mk,2i =
2

α− β

n
∑

i=1

(

α2i − β2i + α2i−1 − β2i−1
)

.

By summing up the geometric partial sums, we have
n
∑

i=1

Mk,2i =
2

α− β

[

α2(α2n − 1)

α2 − 1
−

β2(β2n − 1)

β2 − 1
+

α(α2n − 1)

α2 − 1
−

β(β2n − 1)

β2 − 1

]

.

Then, using the note in Theorem 4.7, we have
n
∑

i=1

Mk,2i

=
−2

k2(α− β)

[

(α2n+2β2 − α2n+2 − α2β2 + α2)

−(α2β2n+2 − β2n+2 − α2β2 + β2) + (α2n+1β2 − α2n+1 − αβ2 + α)

−(α2β2n+1 − β2n+1 − α2β + β)
]

=
−2

k2(α− β)

[

(αβ)2(α2n − β2n)− (α2n+2 − β2n+2) + (α2 − β2)

+(αβ)2(α2n−1 − β2n−1)− (α2n+1 − β2n+1) + (αβ)(α − β) + (α− β)
]

=
2

k2(α− β)

[

(α2n+2 − β2n+2 + α2n+1 − β2n+1)

−(α2n − β2n + α2n−1 − β2n−1)− (α2 − β2)
]

=
1

k2
(Mk,2n+2 −Mk,2n)−

2

k
.

�

Remark 4.9. Note that we can check
n
∑

i=1

Mk,2i +

n
∑

i=1

Mk,2i−1 =

2n
∑

i=1

Mk,i

using the above three theorems.

Theorem 4.10 (Sum involving binomial coefficients). For any integer n ≥ 0,

(21)

n
∑

i=0

(

n

i

)

kiMk,i = Mk,2n.
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Proof. By Binet’s formula, we have

n
∑

i=0

(

n

i

)

kiMk,i =
2

α− β

n
∑

i=0

(

n

i

)

ki
(

αi − βi + αi−1 − βi−1
)

.

Then,

n
∑

i=0

(

n

i

)

kiMk,i =
2

α− β

n
∑

i=0

(

n

i

)[

(kα)i − (kβ)i +
1

α
(kα)i −

1

β
(kβ)i

]

=
2

α− β

[

n
∑

i=0

(

n

i

)

(kα)i −

n
∑

i=0

(

n

i

)

(kβ)i +
1

α

n
∑

i=0

(

n

i

)

(kα)i

−
1

β

n
∑

i=0

(

n

i

)

(kβ)i

]

.

By the binomial theorem, we have

n
∑

i=0

(

n

i

)

kiMk,i=
2

α− β

[

(kα+ 1)n− (kβ + 1)n +
1

α
(kα+ 1)n−

1

β
(kβ + 1)n

]

.

Since x2 = kx+ 1, we have

n
∑

i=0

(

n

i

)

kiMk,i =
2

α− β

[

(α2)n − (β2)n +
1

α
(α2)n −

1

β
(β2)n

]

=
2

α− β
(α2n − β2n + α2n−1 − β2n−1)

= Mk,2n. �

4.5. The limit of the quotient of two consecutive terms

In the modified k-Fibonacci-like sequence, the limit of the quotient of two
consecutive terms is equal to the positive root α of the corresponding charac-
teristic equation, x2 − kx− 1 = 0.

Theorem 4.11.

(22) lim
n→∞

Mk,n+1

Mk,n

= α.

Proof. By Binet’s formula, we have

lim
n→∞

Mk,n+1

Mk,n

= lim
n→∞

αn+1 − βn+1 + αn − βn

αn − βn + αn−1 − βn−1

= lim
n→∞

1−
(

β
α

)n+1

+ 1
α
− 1

α

(

β
α

)n

1
α
− 1

α

(

β
α

)n

+ 1
α2 − 1

α2

(

β
α

)n−1 ,
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and taking into account that limn→∞

(

β
α

)n

= 0 since |β| < α. Thus

lim
n→∞

Mk,n+1

Mk,n

=
1 + 1

α
1
α
+ 1

α2

= α.
�

5. The ordinary generating function of the modified

k-Fibonacci-like sequence

In this section, the ordinary generating function for the modified k-Fibona-
cci-like sequence is presented. The modified k-Fibonacci-like sequence can be
seen as the coefficients of the power series which is called the ordinary gener-
ating function of the modified k-Fibonacci-like sequence. Therefore, if Mk(x)
is the ordinary generating function, we can write

Mk(x) =

∞
∑

i=0

Mk,ix
i = Mk,0 +Mk,1x+Mk,2x

2 +Mk,3x
3 + · · ·+Mk,nx

n + · · · .

First, we can find the radius of convergence. By Theorem 4.11,

lim
n→∞

∣

∣

∣

∣

Mk,n+1x
n+1

Mk,nxn

∣

∣

∣

∣

= α | x | .

Thus, the radius of convergence is 1
α
. And then,

Mk(x) = Mk,0 + xMk,1 + x2Mk,2 + x3Mk,3 + x4Mk,4 + x5Mk,5 + · · · ,

kxMk(x) = kxMk,0 + kx2Mk,1 + kx3Mk,2 + kx4Mk,3 + kx5Mk,4 + · · · ,

x2Mk(x) = x2Mk,0 + x3Mk,1 + x4Mk,2 + x5Mk,3 + x6Mk,4 + · · · .

Since Mk,n+2 − kMk,n+1 −Mk,n = 0,Mk,0 = 2, and Mk,1 = 2, we obtain

(1− kx− x2)Mk(x) = Mk,0 + (Mk,1 − kMk,0)x+ (Mk,2 − kMk,1 −Mk,0)x
2

+ (Mk,3 − kMk,2 −Mk,1)x
3 + · · ·

= Mk,0 + (Mk,1 − kMk,0)x

= 2 + (2 − 2k)x.

Hence, the ordinary generating function of the modified k-Fibonacci-like se-
quence {Mk,n}

∞
n=0 is

(23) Mk(x) =
2 + 2x(1− k)

1− kx− x2
.

6. Conclusions

In this paper, we have introduced and studied the modified k-Fibonacci-
like sequence. Many identities, such as the Catalan, Cassini, and d’Ocagne
identities for the modified k-Fibonacci-like sequence, are stated and in their
proof we use Binet’s formula. In addition, we have introduced the sums of the
modified k-Fibonacci-like sequence and proved them. Moreover, we have found
the ordinary generating function for the modified k-Fibonacci-like sequence.
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Moreover, we can generalize the modified k-Fibonacci-like sequence for Nk,0

= Nk,1 = a, where a is an integer. In this case, the nth modified k-Fibonacci-
like number Nk,n is given by

Nk,n = a

(

αn − βn

α− β
+

αn−1 − βn−1

α− β

)

.

The Catalan identity is

N2
k,n −Nk,n+rNk,n−r = a2k(−1)n−rF 2

k,r.

The Cassini identity is

N2
k,n −Nk,n+1Nk,n−1 = a2k(−1)n−1.

The d’Ocagne identity is

Nk,mNk,n+1 −Nk,m+1Nk,n = a2k(−1)nFk,m−n.

The ordinary generating function is

Nk =
a+ ax(1 − k)

1− kx− x2
.
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