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ON GENERALIZED ZERO-DIFFERENCE BALANCED

FUNCTIONS

Lin Jiang and Qunying Liao

Abstract. In the present paper, by generalizing the definition of the
zero-difference balanced (ZDB) function to be the G-ZDB function, sev-
eral classes of G-ZDB functions are constructed based on properties of
cyclotomic numbers. Furthermore, some special constant composition
codes are obtained directly from G-ZDB functions.

1. Introduction and backgrounds

Zero-difference balanced functions were first introduced by Ding in con-
structing optimal constant composition codes [2] and optimal and perfect dif-
ference systems of sets [3].

Definition 1.1 ([2, 3]). Let (A,+) and (B,+) be two abelian groups of order n
and l respectively. A function f from A to B is called zero-difference balanced
(ZDB for short) if there exists a non-negative integer λ, such that

|{x ∈ A : f(x+ a)− f(x) = 0}| = λ

for every nonzero a ∈ A. We also call the function f to be an (n, λ)-ZDB
function. Sometimes we also call f to be a ZDB function with the parameters
(n, λ).

For convenience, throughout the paper, we follow the notations defined in
[5].

• Im(f) = {b0, . . . , bl̄−1} ⊆ B denotes the image set of f and l̄ = |Im(f)|;

• A
′

= {x ∈ A | f(x) = bi} and τi = |A
′

| for 0 ≤ i ≤ l̄ − 1;

• P = {A
′

, . . . , A
′

−1} denotes the set of all the preimage sets, clearly, P
constitutes a partition of A.

Received April 7, 2015; Revised November 1, 2015.
2010 Mathematics Subject Classification. 06E30, 05B10, 94B25.
Key words and phrases. zero-difference balanced (ZDB) function, generalized ZDB func-

tion, cyclotomic coset, difference system of sets, constant composition code.
This research is supported by the Natural Science Foundation of China with No.11401408,

Sichuan Province Foundation of China with No.14ZA0034.

c©2016 Korean Mathematical Society

41



42 L. JIANG AND Q. Y. LIAO

Furthermore, by the ZDB property, for each i (0 ≤ i ≤ l̄ − 1), the list of
differences a − a′ with a, a′ ∈ A and a 6= a′, covers all nonzero elements of
A exactly λ times. In this case, the set P is called an (n, {τ0, . . . , τl̄−1}, λ)-
partitioned difference family (PDF). Because of the connection with PDF, each
ZDB function can be identified with parameters (n, {τ0, . . . , τl̄−1}, λ) (all these
parameters are needed in some applications), we also associate every ZDB
function with the three parameters (n, l, λ) since in some cases the parameters
{τ0, . . . , τl̄−1} may not be available.

It is well known that perfect nonlinear functions [7, 8, 12, 16, 17] and dif-
ference balanced functions [13, 18] are special types of ZDB functions. ZDB
functions unify different subjects in combinatorics, algebra and finite geometry,
and they have been found applications not only in these three areas but also
in communications, coding theory and cryptography.

For the case gcd(n, λ) = 1, many (n, λ)-ZDB functions are constructed [1,
2, 3, 4, 5, 18]. For gcd(n, λ) 6= 1, Luo, et al. [11] constructed ZDB functions
with parameters (pr, ps) (0 ≤ s ≤ r), where p is a prime. Recently, by using
cyclotomic cosets, Ding, et al. [5] constructed ZDB functions with parameters
(2m − 1, (2m +m− 2)/m,m− 1) (m is a prime), (2m − 1, (2m−1 +m− 1)/m,
2m− 1) (m is an odd prime), or (n, (n+ e− 1)/e, e− 1), where pi (1 ≤ i ≤ k)

are distinct primes, n =
∏k

i p
mi

i and e | gcd(pm1

1 − 1, . . . , pmk

k − 1).
On the other hand, let Fl = {0, . . . , l−1} be the l-alphabet, and Fn

l be the set
of all n-tuples over Fl. An (n,M, d, [w0, . . . , wl−1])l constant composition code
(CCC) is a code over Fn

l with size M and minimum Hamming distance d such
that in every codeword the element i appears exactly wi times for every i ∈ Fl.
Furthermore, let Al(n,M, d, [w0, . . . , wl−1])l denote the maximum size of an
(n,M, d, [w0, . . . , wl−1])l-CCC, the following upper bound for the maximum
size of a CCC is given [11].

Lemma 1.2 ([11]). If nd− n2 +
∑l−1

i=0 w
2
i > 0, then

Al(n,M, d, [w0, . . . , wl−1])l ≤
nd

nd− n2 +
∑l−1

i=0 w
2
i

.

An (n,M, d, [w0, . . . , wl−1])l constant composition code is optimal when the
bound of Lemma 1.2 is achieved. In [2, 6], the link between ZDB functions and
optimal CCCs is established.

Lemma 1.3 ([2, 6]). Suppose that f is an (n, l, λ)-ZDB from an abelian group

(A,+) of order n to an abelian group (B,+) of order l, and Im(f) is the image

set of f with |Im(f)| = l. Let A = {a0, . . . , an−1} and Im(f) = {b0, . . . , bl−1}.

Define τi = |{x ∈ A : f(x) = bi} for 0 ≤ i ≤ l− 1. Then the code

C = {(f(a0 + ai), . . . , f(an−1 + ai)) : 0 ≤ i ≤ n− 1}

is an (n, n, n−λ, [τ0, . . . , τl−1])l-CCC over Im(f) meeting the bound of Lemma

1.2, which means that such code is optimal.
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Besides, it is well known that difference systems of sets (DSS) are introduced
by Levenstein [9, 10] for the construction of comma-free codes for synchroniza-
tion. An (n, [τ0, . . . , τl − 1], ρ) difference system of set (DSS) is a collection of
l disjoint sets Di ⊆ Zn such that |Di| = τi for all 0 ≤ i < l and the multiset

(1.1) {∗(b− b′) (mod n) : b ∈ Di, b′ ∈ Dj, i 6= j, 0 ≤ i, j ≤ l − 1∗}

contains every nonzero x ∈ Zn at least ρ times. A DSS is called perfect if every
nonzero element x ∈ Zn is contained exactly ρ times in the above multiset.
For applications of DSS to the code synchronization, the number rl(n, ρ) =
∑l−1

i=0 |Di| is required to be as small as possible.

Lemma 1.4 ([14]). For any DSS with parameters (n, [τ0, . . . , τl − 1], ρ),

rl(n, ρ) ≥

√

SQUARE

(

ρ(n− 1) +

⌈

ρ(n− 1)

l− 1

⌉)

,

where SQUARE(x) denotes the smallest square number no less than the positive

integer x, and ⌈x⌉ denotes the ceiling function. In particular, a DSS is called

optimal when the lower bound is achieved.

The correspondence between ZDB functions and perfect DSSs is first estab-
lished in [2].

Lemma 1.5 ([2]). Suppose that f is an (n, l, λ)-ZDB function from an abelian

group (A,+) of order n to an abelian group (B,+) of order l, and Im(f) is

the image set of f with |Im(f)| = l. Define Di = {x ∈ Zn : f(x) = bi} and

τi = |Di| for 0 ≤ i ≤ l − 1. Then the set

D = {Di : 0 ≤ i ≤ l− 1}

is an (n, [τ0, . . . , τl−1], n − λ) perfect DSS. Furthermore, if lλ ≤ n, then D is

optimal.

In the present paper, we generalize the definition of ZDB functions to the
general G-ZDB functions, and then give two constructions for G-ZDB functions
(Sections 2-3), which generalize the main results in [5]. Furthermore we obtain
some constant composition codes and difference systems of sets directly from
G-ZDB functions (Section 4), which also generalize the main results in [2, 5, 6].

2. Generalized ZDB functions and p-cyclotomic sets

This section generalizes the definition of ZDB functions to be the G-ZDB
function as follows.

Definition 2.1. Let (A,+) and (B,+) be two abelian groups of order n and
l, respectively. A function f from A to B is called generalized zero-difference
balanced (G-ZDB for short) if there exists a non-empty S, such that

|{x ∈ A : f(x+ a)− f(x) = 0}| ∈ S
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for every nonzero a ∈ A. We also call the function f to be an (n, S) (or
(n, l̄, S))-G-ZDB function, where l̄ is defined as above. Then ZDB functions
are the special G-ZDB functions.

For any prime p, basing on p-cyclotomic cosets, we can construct several
classes of G-ZDB functions and improve the constructions of ZDB functions
in [5] from the even prime case p = 2 to the general prime cases. Further-
more, some constant composition codes (CCC) are constructed from G-ZDB
functions.

Before giving our main results, we need to introduce the definition of the
p-cyclotomic coset first, where p is a prime.

Let p be a prime, m be a positive integer and n = pm − 1. Suppose that

Ai = {i, i× p (mod pm − 1), . . . , i× pli−1 (mod pm − 1)} ⊆ Zn,

is the p-cyclotomic coset modulo n containing i, where li is the least positive
integer such that i ≡ i × pli (mod pm − 1) and is called the size of this p-
cyclotomic coset. The leader of a p-cyclotomic coset modulo n is the least
integer in the p-cyclotomic coset. Then we have the following result.

Lemma 2.2. (1) All the p-cyclotomic cosets modulo n form a partition of Zn.

(2) If m is a prime, then every nonzero p-cyclotomic coset has size m or 1,

and the total number of nonzero p-cyclotomic cosets modulo n is p− 2+ pm−p
m

.

(3) If m is a prime, then every nonzero 2-cyclotomic coset has size m, and

the total number of nonzero 2-cyclotomic cosets modulo n is 2m−2
m

.

Proof. (1) It is easy to see that A0 = {0} and Zn = ∪i∈Zn
Ai. Now for any

i and j with 1 ≤ i 6= j ≤ pm − 2, if there exists some x ∈ Ai ∩ Aj , then
i · pt ≡ j · ps (mod pm − 1) for some t and s with 0 ≤ t, s ≤ m− 1. From i 6= j

we know that t 6= s. Without loss of generality, set s = t+ k (1 ≤ k ≤ m− 1),
then we can get i ≡ j · pk (mod pm − 1), thus i ∈ Aj , i.e., Ai ⊆ Aj . Now from
the definition of the leader of the cyclotomic coset, we can obtain i = j, this is
a contradiction. Therefore the sets Ai are disjoint to each others, which means
that all the p-cyclotomic cosets modulo n form a partition of Zn.

(2) From pm ≡ 1 (mod n) we know that for any i, |Ai| ≤ m. Now for any
i (1 ≤ i ≤ pm − 2), we consider the size of the coset Ai. This reduces to
compute the least integer li such that i · pli ≡ i (mod pm − 1), equivalently,
pm − 1 | i · (pli − 1). Note that m is a prime and 1 ≤ li ≤ m, thus

gcd(pm − 1, pli − 1) = pgcd(m,li) − 1 =

{

p− 1, if 1 ≤ li ≤ m− 1;
pm − 1, li = m,

this means that

li =

{

1, if pm−1
p−1 |i;

m, otherwise.

Then for any i = 1, . . . , pm − 2, we have

|Ai| =

{

1, if pm−1
p−1 |i;

m, otherwise.
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This means that every nonzero p-cyclotomic coset Ai has size 1 orm, depending

on pm−1
p−1 | i or not, respectively. Note that Ai = {0} if and only if i = 0, and

the number of i (1 ≤ i ≤ pm − 2) satisfying pm−1
p−1 | i is p− 2. Hence the total

number of nonzero p-cyclotomic cosets modulo n is

p− 2 +
(pm − 2)− (p− 2)

m
= p− 2 +

pm − p

m
.

(3) If p = 2, then for any i (1 ≤ i ≤ 2m − 2), we consider the least integer li
such that i · 2li ≡ i (mod 2m − 1), i.e., 2m − 1 | i · (2li − 1). Note that m is a
prime and 1 ≤ li ≤ m, thus

gcd(2m − 1, 2li − 1) = 2gcd(m,li) − 1 =

{

1, 1 ≤ li ≤ m− 1;
2m − 1, li = m.

Now from 1 ≤ li ≤ m− 1 and 2m − 1 | i · (2li − 1), we have 2m − 1 | i, namely,
i ≥ 2m − 1, which is a contradiction. Therefore, for any i (1 ≤ i ≤ 2m − 2),
we can obtain li = m, and so |Ai| = m. This means that every nonzero 2-
cyclotomic coset Ai has size m. Note that Ai = {0} if and only if i = 0, hence

the total number of nonzero 2-cyclotomic cosets modulo n is 2m−2
m

.
Thus we complete the proof of Lemma 2.2. �

3. The constructions for two classes of G-ZDB functions

Before giving our main results and their proves, the following two lemmas
are needed.

Lemma 3.1 ([15]). Suppose that a, n1, n2 ∈ Z+, n1 6= n2, then

(1) gcd(an1 − 1, an2 − 1) = agcd(n1,n2) − 1;

(2) gcd(an1 − (−1)
n1

(n1,n2) , an2 − (−1)
n2

(n1,n2) ) = agcd(n1,n2) + 1;
(3) otherwise,

gcd(an1 ± 1, an2 ± 1) =

{

1, if 2 | a,
2, if 2 ∤ a.

Lemma 3.2 ([15]). Suppose that m1 and m2 are both two positive integer

numbers, b1 and b2 are both integer numbers, then the congruence
{

x ≡ b1 (mod m1),
x ≡ b2 (mod m2),

has solutions if and only if gcd(m1,m2) | b1 − b2. Furthermore when the con-

gruence has solutions, it has unique solution modulo lcm[m1,m2].

Basing on the properties for p-cyclotomic sets, this section generalizes the
main results in [5] and constructs two classes of G-ZDB functions (Theorems
3.1-3.2).
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Theorem 3.1. For any two prime p and m, there exists a G-ZDB function

with the parameters

(pm − 1, p− 1 +
pm − p

m
, {(m− 1)(p− 1), 0}).

Proof. Let n = pm − 1 and Γm be the set of all leaders of p-cyclotomic cosets
modulo n. Since p and m are both primes, from (2) of Lemma 2.2, we have

|Γm| = p− 1 +
pm − p

m
.

Now we define a function f from (Zn,+) to itself by f(x) = ix, where ix
is the leader of the p-cyclotomic coset containing x. By (2) of Lemma 2.2,
every nonzero p-cyclotomic coset has 1 or m element(s) modulo n = pm − 1,
and there are exactly p − 2 nonzero cosets with only one element, hence the
sizes of the preimage sets of f form the set {1, . . . , 1,m, . . . ,m}. Therefore

|Im(f)| = |Γm| = p− 1 + pm−p
m

.
On the other hand, for any given a 6= 0 (mod pm − 1), if there exists some

x (1 ≤ x ≤ pm − 1) such that f(x+ a) = f(x), i.e., both x+ a and x belong to

the same p-cyclotomic coset Ai, then
pm−1
p−1 ∤ i. Otherwise, by the proof of (2)

of Lemma 2.2, such Ai includes only one element, and so x+ a = x, i.e., a = 0,
this is a contradiction. Hence x ∈ Ai with |Ai| = m, and so there exists some
k with 1 ≤ k ≤ m− 1 satisfying x+ a ≡ pkx (mod pm − 1), equivalently,

(3.1) (pk − 1)x ≡ a (mod pm − 1).

Note that m is a prime and 1 ≤ k ≤ m − 1, thus from (1) of Lemma 3.1,
we have gcd(pk − 1, pm − 1) = p − 1. Hence (3.1) has solutions if and only if
p− 1 | a. In this case, (3.1) is equivalent to

x ≡
a

pk − 1

(

mod
pm − 1

p− 1

)

.

Therefore the size of the set {x ∈ Zn | f(x + a) = f(x)} is (m − 1)(p − 1)
for any nonzero a ∈ Zn with p− 1 | a.

Otherwise, i.e., congruence (3.1) has no solutions. Therefore the size of the
set {x ∈ Zn | f(x+ a) = f(x)} is 0 for any nonzero a ∈ Zn with p− 1 ∤ a.

Hence by Definition 2.1 of the G-ZDB function, the function f defined above

is a G-ZDB function on (Zn,+) with the parameters (pm − 1, p − 1 + pm−p
m

,
{(m− 1)(p− 1), 0}).

This completes the proof of Theorem 3.1. �

Theorem 3.2. For any prime p and odd prime m, there exists a G-ZDB

function with the parameters (2m − 1, (2m−1 +m − 1)/m, {2m− 1}) (p = 2),

or (pm − 1, p+1
2 + pm−p

2m , {mp− p+m+ 1, 2m, 0}) (p ≥ 3).
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Proof. Let n = pm− 1,
∏

m be the set of all p-cyclotomic cosets modulo n, and

∆m =

{

B ∪ (−B) | B ∈
∏

m

}

,

where −B = {n− i | i ∈ B}. Let Γm as defined in the proof of Theorem 3.1.
Now similarly to the proof of Theorem 3.1, for any B ∈

∏

m, the leader of
B ∪ (−B) is the least integer in this set. It is easy to see that B and −B are

disjoint to each other when {0} 6= B ∈
∏

m or pm−1
2 6∈ B with the odd prime p.

Note that for any i = 1, . . . , pm−2, we have pm−1
p−1 | i if and only if pm−1

p−1 | n− i,

and pm−1
p−1 | pm−1

2 ⇔ 2 ∤ p. Hence we have the following two cases.

(I) For the case p = 2, we know that B and −B are disjoint for each {0} 6=

B ∈
∏

m. Thus by (3) of Lemma 2.2 we can get |Γm| = 1 + 2m−2
m

. Hence

|∆m| = 1 + 2m−2
2m = 2m−1−1+m

m
.

Now we define the function g from (Zn,+) to itself by g(x) = jx, where
jx is the leader of the set B ∪ (−B) containing x. Since every nonzero set
B ∪ (−B) has 2m elements, hence the sizes of the preimage sets of g is the set

{1, 2m, . . . , 2m}. Thus |Im(g)| = |∆m| = 2m−1−1+m
m

.

Note that for any nonzero element a ∈ Zn, if there exists some x such that
1 ≤ x ≤ 2m − 1 and g(x+ a) = g(x), which means that x+ a belongs to the 2-

cyclotomic coset B containing either x or −x. Note that for B with 2m−1
2 ∈ B,

we have |B| = 1 and B = −B. Hence the existence of such x means that there

exists some B such that 2m−1
2 6∈ B and B 6= {0}, and so there is some integer

k with 1 ≤ k ≤ m− 1, such that

(3.2) x+ a ≡ 2kx (mod 2m − 1),

or there is some t with 1 ≤ t ≤ m such that

(3.3) x+ a ≡ −2tx (mod 2m − 1).

As for (3.2), similarly to the proof of Theorem 3.1, the number of solutions for
x is m−1. As for (3.3), note that m is an odd prime and 1 ≤ t ≤ m, hence from
(3) of Lemma 3.1, we have gcd(2t +1, 2m − 1) = 1 and then (3.3) is equivalent
to

x ≡
−a

2t + 1
(mod 2m − 1) .

Therefore the size of the set {x ∈ Zn | g(x + a) = g(x)} is m for any nonzero
a ∈ Zn.

On the other hand, suppose that x is a solution both for (3.2) and (3.3),
then from Lemma 3.2, there are some k (1 ≤ k ≤ m − 1) and t (1 ≤ t ≤ m)
such that

2m − 1 |
a

2k − 1
+

a

2t + 1
,

equivalently, (2m − 1)(2k − 1)(2t + 1) | (2k + 2t)a. Then we have

2m − 1 | a(2|k−t| + 1).
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Note that m is a prime and |k − t| < m, thus from (3) of Lemma 3.1, we have
gcd(2m − 1, 2|k−t| + 1) = 1, and then 2m − 1 | a, this is a contradiction. Thus
the total number of x satisfying either (3.2) or (3.3) is (m− 1) +m = 2m− 1.

From the above, when p = 2 one can get G-ZDB functions with the param-
eters

(2m − 1, (2m−1 +m− 1)/m, {2m− 1}).

(II) For the case p ≥ 3, we have pm−1
p−1 | pm−1

2 . From the proof of (2) of

Lemma 2.2, we know that if pm−1
2 ∈ B, then |B| = 1 and B = −B. Therefore

there are another p−3 nonzero cosets B such that |B| = 1 and B 6= −B. Hence

|∆m| = 2 +
p− 3

2
+

pm − 1− (p− 1)

2m
=

p+ 1

2
+

pm − p

2m
.

Now we define the function h from (Zn,+) to itself by h(x) = sx, where sx is
the leader of the set B ∪ (−B) containing x. Since every nonzero set B ∪ (−B)

with pm−1
2 6∈ B has 2m elements, the sizes of the preimage sets of h form the

set {1, 1, 2, . . . , 2, 2m, . . . , 2m}. And so |Im(h)| = |∆m| = p+1
2 + pm−p

2m .

Note that for any nonzero element a ∈ Zn, if there exists some x such that
1 ≤ x ≤ pm − 1 and h(x+ a) = h(x), which means that x+ a belongs to the p-

cyclotomic coset B containing either x or −x. Note that for B with pm−1
2 ∈ B,

we have |B| = 1 and B = −B. Hence the existence of such x means that there

exists some B such that pm−1
2 6∈ B and B 6= {0}, and so there is an integer k

with 1 ≤ k ≤ m− 1, such that

(3.4) x+ a ≡ pkx (mod pm − 1),

or there is some t with 1 ≤ t ≤ m such that

(3.5) x+ a ≡ −ptx (mod pm − 1).

As for (3.4), similarly to the proof of Theorem 3.1, the number of solutions for
x is (m−1)(p−1) or 0 depends on that either p−1 | a or p−1 ∤ a, respectively.

As for (3.5), we have

(pt + 1)x ≡ a (mod pm − 1).

Since m is an odd prime and 1 ≤ t ≤ m, hence from Lemma 3.1, we have
gcd(pt + 1, pm − 1) = 2. Hence (3.5) has solutions if and only if 2 | a. In this
case, (3.5) is equivalent to

x ≡
−a

pt + 1
(mod

pm − 1

2
).

Therefore the size of the set {x ∈ Zn | h(x+ a) = h(x)} is 2m for any nonzero
a ∈ Zn with 2 | a.

Otherwise, i.e., congruence (3.5) has no solutions. Therefore the size of the
set {x ∈ Zn | h(x+ a) = h(x)} is 0 for any nonzero a ∈ Zn with 2 ∤ a.
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On the other hand, suppose that x is a solution both for (3.4) and (3.5),
then from Lemma 3.2, there are some k (1 ≤ k ≤ m − 1) and t (1 ≤ t ≤ m)
such that

pm − 1

p− 1
|

a

pk − 1
+

a

pt + 1
,

equivalently, (pm − 1)(pt + 1)p
k−1
p−1 | (pk + pt). Then we have

pm − 1 | a(p|k−t| + 1).

Note that m is a prime and |k − t| < m, thus from (3) of Lemma 3.2, we

have gcd(pm − 1, p|k−t| + 1) = 2, and then pm−1
2 | a. Note that p− 1 | a, thus

lcm[p−1, pm−1
2 ] = pm−1 | a, this is a contradiction since 0 < a ≤ pm−2. Hence

the total number of x satisfying either (3.4) or (3.5) is (m− 1)(p− 1) + 2m =
mp− p+m+ 1 or 2m or 0.

From the above, when p ≥ 3 one can get G-ZDB functions with the param-
eters

(pm − 1,
p+ 1

2
+

pm − p

2m
, {mp− p+m+ 1, 2m, 0}).

This completes the proof of Theorem 3.2. �

Remark 3.3. By (3) of Lemma 2.2, we know that each nonzero 2-cyclotomic
coset has exactly m elements. And so by taking p = 2 in the proofs of Theo-
rems 3.1 and 3.2, the corresponding G-ZDB function is just the ZDB function
constructed by Ding [2, 6], and so one can obtain Theorems 2 and 3 in [5],
respectively.

4. The constant composition codes and difference systems of sets
basing on G-ZDB functions

In this section, we study the applications of the G-ZDB functions for both
constant composition codes and difference systems of sets. In the same way as
that in [2, 6], basing on G-ZDB functions, one can construct a class of CCCs
and DSSs as follows.

Theorem 4.1. Suppose that f is an (n, l, S)-G-ZDB function from an abelian

group (A,+) of order n to an abelian group (B,+) of order l, and λ is the

largest positive integer of S, and Im(f) is the image set of f with |Im(f)| = l.

Let A = {a0, . . . , an−1} and Im(f) = {b0, . . . , bl−1}. Define τi = |{x ∈ A :

f(x) = bi} for 0 ≤ i ≤ l − 1. Then the code

C = {ci = (f(a0 + ai), . . . , f(an−1 + ai)) : 0 ≤ i ≤ n− 1}

is an (n, n, n− λ, [τ0, . . . , τl−1])l-CCC over Im(f).

Proof. It is easy to see that the length of every codeword of C and the number
of all codewords in C are both n. Now we consider the minimum Hamming
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distance of C. For any 0 ≤ i 6= j ≤ n− 1, the Hamming distance between two
codes ci and cj is

dH(ci, cj) = n− ♯{ak | f(ai + ak) = f(aj + ak), 0 ≤ k ≤ n− 1}

= n− ♯{ai + ak | f(ai + ak) = f(ai + ak + (aj − ai)), 0 ≤ k ≤ n− 1}

= n− ♯{ak | f(ak) = f(ak + (aj − ai)), 0 ≤ k ≤ n− 1}.

Note that f is an (n, l, S)- G-ZDB function and λ is the largest positive integer
of S, namely, for any nonzero x ∈ A,

♯{ak | f(ak + x) = f(ak)} ≥ λ.

Therefore the minimal distance of C equals n− λ. �

Theorem 4.2. Suppose that f is an (n, l, λ)-G-ZDB function from an abelian

group (A,+) of order n to an abelian group (B,+) of order l, and λ is the

largest positive integer of S, and Im(f) is the image set of f with |Im(f)| = l.

Define Di = {x ∈ Zn : f(x) = bi} and τi = |Di| for 0 ≤ i ≤ l− 1. Then the set

D = {Di : 0 ≤ i ≤ l− 1}

is an (n, [τ0, . . . , τl−1], n − λ)-DSS. In particular, such DSS is perfect if and

only if the corresponding G-ZDB function f is ZDB.

Proof. Since f is an (n, l, S)-G-ZDB function and λ is the largest positive in-
teger of S, namely, for any nonzero x ∈ A,

♯{ak | f(ak + x) = f(ak)} ≥ λ.

Thus from the construction of DSSs, we know that the multiset in (1.1) con-
tains every nonzero element x ∈ Zn at least n − λ times. Hence we get an
(n, [τ0, . . . , τl−1], n − λ)-DSS. In particular, such DSS is perfect if and only if
for any nonzero x ∈ A,

♯{ak | f(ak + x) = f(ak)} = λ,

namely, f is a ZDB function. This completes the proof of Theorem 4.2. �

5. Conclusions

For any prime m, basing on 2-cyclotomic sets modulo n = 2m − 1, Ding et
al. [5] obtains two families of ZDB functions on (Zn,+) with new parameters.
For any prime p, the present paper generalizes the definition of ZDB functions
and the corresponding results in [5], i.e., employing p-cyclotomic sets modulo
n = pm − 1, constructs two families of G-ZDB functions on (Zn,+). We show
that these two families of ZDB functions in [5] are just the special case in our
constructions.

Moreover, in the same way as that in [2, 6], we can construct constant
composition codes and difference system of sets directly from G-ZDB functions.
Basing on some special G-ZDB functions, we prove that the corresponding
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CCCs are optimal, and the DSSs constructed by the G-ZDB function f is
perfect when f is a ZDB function.
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