GENERALIZATION OF THE FEJÉR-HADAMARD'S INEQUALITY FOR CONVEX FUNCTION ON COORDINATES

Ghulam Farid and Atiq Ur Rehman

Abstract

In this paper, we give generalization of the Fejér-Hadamard inequality by using definition of convex functions on n-coordinates. Results given in $[8,12]$ are particular cases of results given here.

1. Introduction

Convex functions are important and provide a base to build literature of mathematical inequalities. A function $f: I \rightarrow \mathbb{R}$, where I is an interval in \mathbb{R} is called convex if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

where $\lambda \in[0,1], x, y \in I$.
A bundle of inequalities in literature, are due to convex functions or functions related to convex functions see $[4,9,15]$. A classical inequality for convex functions is Hadamard inequality, this is given as follows:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \frac{f(a)+f(b)}{2} \tag{1}
\end{equation*}
$$

where $f: I \rightarrow \mathbb{R}$ is a convex function $a, b \in I, a<b$ (see [17, p. 137]).
In many areas of analysis, application of the Hadamard inequality appear for different classes of functions (see $[1,3,6,10,18]$ for convex functions). Some useful mappings connected to this inequality are also defined by many authors, for example, see $[2,5,10,14]$. In recent years, the concept of convexity has been extended and generalized in various directions. In this regards, very novel and innovative techniques are used by different authors (see, $[11,16]$).

[^0]In 1906, Fejér (see [13] and [17, p. 138]) established the following weighted generalization of the Hadamard inequality. The inequalities

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x \leq \int_{a}^{b} f(x) g(x) d x \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \tag{2}
\end{equation*}
$$

hold for every convex function $f: I \rightarrow \mathbb{R}, a, b \in I$, and $g:[a, b] \rightarrow \mathbb{R}^{+}$is symmetric about $(a+b) / 2$.

In [8] S. S. Dragomir gave Hadamard inequality for rectangle in plane by defining convex functions on coordinates.

Definition 1.1. Let $\Delta^{2}:=[a, b] \times[c, d] \subset \mathbb{R}^{2}$ with $a<b$ and $c<d$. A function $f: \Delta^{2} \rightarrow \mathbb{R}$ will be called convex on coordinates if the partial mapping $f_{y}:[a, b] \rightarrow \mathbb{R}, f_{y}(u):=f(u, y)$ and $f_{x}:[c, d] \rightarrow \mathbb{R}, f_{x}(v):=f(x, v)$ are convex, where defined for all $y \in[c, d]$ and $x \in[a, b]$.
Theorem 1.2. Let $f: \Delta^{2} \rightarrow \mathbb{R}$ be a convex mapping on coordinates in Δ^{2}. Also let $g_{1}:[a, b] \rightarrow \mathbb{R}^{+}$and $g_{2}:[c, d] \rightarrow \mathbb{R}^{+}$be two integrable and symmetric functions about $(a+b) / 2$ and $(c+d) / 2$ respectively. Then one has the following inequalities

$$
\begin{align*}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
\leq & \frac{1}{2}\left[\frac{1}{G_{1}} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) g_{1}(x) d x+\frac{1}{G_{2}} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) g_{2}(y) d y\right] \\
\leq & \frac{1}{G_{1} G_{2}} \int_{a}^{b} \int_{c}^{d} f(x, y) g_{1}(x) g_{2}(y) d y d x \\
\leq & \frac{1}{4}\left[\frac{1}{G_{1}} \int_{a}^{b} g_{1}(x) f(x, c) d x+\frac{1}{G_{1}} \int_{a}^{b} g_{1}(x) f(x, d) d x\right. \tag{3}\\
& \left.+\frac{1}{G_{2}} \int_{c}^{d} g_{2}(y) f(a, y) d y+\frac{1}{G_{2}} \int_{c}^{d} g_{2}(y) f(b, y) d y\right] \\
\leq & \frac{1}{4}[f(a, c)+f(a, d)+f(b, c)+f(b, d)]
\end{align*}
$$

where

$$
G_{1}=\int_{a}^{b} g_{1}(x) d x \text { and } G_{2}=\int_{c}^{d} g_{2}(y) d y
$$

There in [12] some mappings connected to above inequality are also considered and their properties are discussed.

In [12] authors extended the definition of convex functions on coordinates to n-coordinates and gave the Hadamard's inequality for n-coordinates and related results. In this paper we give Fejér-Hadamard's inequality for convex functions on coordinates and show that results proved in [8, 12] are particular case of results in this paper.

2. Main results

For $n \geq 2$, let $a_{i}, b_{i}(i=1,2, \ldots, n)$ be real numbers such that $a_{i}<b_{i}$ for $i=1,2, \ldots, n$. We consider an n-dimensional interval Δ^{n} defined as $\Delta^{n}=$ $\prod_{i=1}^{n}\left[a_{i}, b_{i}\right]$. In [12] the definition of a convex function on n-coordinates is given as follows:

Definition 2.1. Let $\left(x_{1}, \ldots, x_{n}\right) \in \Delta^{n}$. A mapping $f: \Delta^{n} \rightarrow \mathbb{R}$ is called convex on n-coordinates if the functions $f_{x_{n}}^{i}$, where $f_{x_{n}}^{i}(t):=f\left(x_{1}, \ldots, x_{i-1}, t\right.$, $\left.x_{i+1}, \ldots, x_{n}\right)$, are convex on $\left[a_{i}, b_{i}\right]$ for $i=1,2, \ldots, n$.

Recall that a mapping $f: \Delta^{n} \rightarrow \mathbb{R}$ is convex in Δ^{n} if for $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \Delta^{n}$ and $\alpha \in[0,1]$, the following inequality holds:

$$
f(\alpha \mathbf{x}+(1-\alpha) \mathbf{y}) \leq \alpha f(\mathbf{x})+(1-\alpha) f(\mathbf{y})
$$

It can be seen that every convex mapping $f: \Delta^{n} \rightarrow \mathbb{R}$ is convex on the n coordinates but converse is not true.

Let $f: \Delta^{n} \rightarrow \mathbb{R}$ be convex in Δ^{n}. Consider $f_{x_{n}}^{i}:\left[a_{i}, b_{i}\right] \rightarrow \mathbb{R}$, defined by

$$
f_{x_{n}}^{i}(t)=f\left(x_{1}, \ldots, x_{i-1}, t, x_{i+1}, \ldots, x_{n}\right), \quad t \in\left[a_{i}, b_{i}\right] .
$$

Now for $x, y \in\left[a_{i}, b_{i}\right]$ and $\alpha \in[0,1]$,

$$
\begin{aligned}
& f_{x_{n}}^{i}(\alpha x+(1-\alpha) y) \\
= & f\left(x_{1}, \ldots, x_{i-1}, \alpha x+(1-\alpha) y, x_{i+1}, \ldots, x_{n}\right) \\
= & f\left(\alpha x_{1}+(1-\alpha) x_{1}, \ldots, \alpha x+(1-\alpha) y, \ldots, \alpha x_{n}+(1-\alpha) x_{n}\right) \\
\leq & \alpha f\left(x_{1}, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_{n}\right)+(1-\alpha) f\left(x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{n}\right) \\
= & \alpha f_{x_{n}}^{i}(x)+(1-\alpha) f_{x_{n}}^{i}(y),
\end{aligned}
$$

which implies $f_{x_{n}}^{i}$ is convex on $\left[a_{i}, b_{i}\right]$, that is, f is convex on n-coordinates. For converse we give the following counter example:

Example 2.2. Let us consider a mapping $f:[0,1]^{n} \rightarrow \mathbb{R}$ defined as

$$
f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \cdot x_{2} \cdots x_{n}
$$

It is convex on n-coordinates as follows:

$$
\begin{aligned}
& f_{x_{n}}^{i}(\alpha x+(1-\alpha) y) \\
= & x_{1} \cdots x_{i-1} \cdot(\alpha x+(1-\alpha) y) \cdot x_{i+1} \cdots x_{n} \\
= & \alpha\left(x_{1} \cdots x_{i-1} \cdot x \cdot x_{i+1} \cdots x_{n}\right)+(1-\alpha)\left(x_{1} \cdots x_{i-1} \cdot y \cdot x_{i+1} \cdots x_{n}\right) \\
= & \alpha f_{x_{n}}^{i}(x)+(1-\alpha) f_{x_{n}}^{i}(y) .
\end{aligned}
$$

But for $\mathbf{x}=(1,1, \ldots, 1,0), \mathbf{y}=(0,1,1, \ldots, 1) \in[0,1]^{n}$, we have

$$
\begin{aligned}
f(\alpha \mathbf{x}+(1-\alpha) \mathbf{y}) & =f(\alpha, 1,1, \ldots, 1-\alpha) \\
& =\alpha(1-\alpha)
\end{aligned}
$$

and

$$
\alpha f(\mathbf{x})+(1-\alpha) f(\mathbf{y})=\alpha \cdot 0+(1-\alpha) \cdot 0=0 .
$$

This gives

$$
f(\alpha \mathbf{x}+(1-\alpha) \mathbf{y})>\alpha f(\mathbf{x})+(1-\alpha) f(\mathbf{y}) \text { for all } \alpha \in(0,1)
$$

that is, f is not convex on $[0,1]^{n}$.
It is interesting to note that if $f: \Delta^{n} \rightarrow \mathbb{R}$ is a convex mapping on n coordinates, then $f_{x_{n}}^{i}:\left[a_{i}, b_{i}\right] \rightarrow \mathbb{R}$ is a convex function on $\left[a_{i}, b_{i}\right]$ for each $i=1,2, \ldots, n$. Also if $g_{i}:\left[a_{i}, b_{i}\right] \rightarrow \mathbb{R}$ is a symmetric function about $\frac{a_{i}+b_{i}}{2}$, then from Fejér-Hadamard's inequality, we have

$$
f_{x_{n}}^{i}\left(\frac{a_{i}+b_{i}}{2}\right) \leq \frac{1}{G_{i}} \int_{a_{i}}^{b_{i}} f_{x_{n}}^{i}\left(x_{i}\right) g\left(x_{i}\right) d x_{i}, \quad i=1,2, \ldots, n,
$$

where

$$
G_{i}=\int_{a_{i}}^{b_{i}} g_{i}\left(x_{i}\right) d x_{i}
$$

This gives us

$$
\begin{equation*}
\sum_{k=1}^{n} f_{x_{n}}^{k}\left(\frac{a_{k}+b_{k}}{2}\right) \leq \sum_{k=1}^{n} \frac{1}{G_{k}} \int_{a_{k}}^{b_{k}} f_{x_{n}}^{k}\left(x_{k}\right) g_{k}\left(x_{k}\right) d x_{k} \tag{4}
\end{equation*}
$$

Theorem 2.3. Let $\left(x_{1}, \ldots, x_{n}\right) \in \Delta^{n}$ and $f: \Delta^{n} \rightarrow \mathbb{R}$ be a convex mapping on n-coordinates. Also, let $g_{i}:\left[a_{i}, b_{i}\right] \rightarrow \mathbb{R}$ be an integrable and symmetric function about $\frac{a_{i}+b_{i}}{2}$ for each $i=1, \ldots, n$. Then we have

$$
\begin{align*}
& \sum_{k=1}^{n} \frac{1}{G_{k}} \int_{a_{k}}^{b_{k}} f_{x_{n}}^{k+1}\left(\frac{a_{k+1}+b_{k+1}}{2}\right) g_{k}\left(x_{k}\right) d x_{k} \\
\leq & \sum_{k=1}^{n} \frac{1}{G_{k} G_{k+1}} \int_{a_{k}}^{b_{k}} \int_{a_{k}+1}^{b_{k}+1} f(\mathbf{x}) g_{k}\left(x_{k}\right) g_{k+1}\left(x_{k+1}\right) d x_{k+1} d x_{k} \tag{5}\\
\leq & \frac{1}{2} \sum_{k=1}^{n}\left[\frac{1}{G_{k}} \int_{a_{k}}^{b_{k}}\left(f_{x_{n}}^{k+1}\left(a_{k+1}\right)+f_{x_{n}}^{k+1}\left(a_{k+1}\right)\right) g_{k}\left(x_{k}\right) d x_{k}\right]
\end{align*}
$$

where

$$
G_{k}=\int_{a_{k}}^{b_{k}} g_{k}\left(x_{k}\right) d x_{k}
$$

and with $n+1 \mapsto 1$. These inequalities are sharp.
Proof. By applying the Fejér-Hadamard's inequality for convex function $f_{x_{n}}^{k+1}$ on interval $\left[a_{k+1}, b_{k+1}\right]$ we have

$$
\begin{align*}
f_{x_{n}}^{k+1}\left(\frac{a_{k+1}+b_{k+1}}{2}\right) G_{k+1} & \leq \int_{a_{k+1}}^{b_{k+1}} f_{x_{n}}^{k+1}\left(x_{k+1}\right) g_{k+1}\left(x_{k+1}\right) d x_{k+1} \tag{6}\\
& \leq\left(\frac{f_{x_{n}}^{k+1}\left(a_{k+1}\right)+f_{x_{n}}^{k+1}\left(b_{k+1}\right)}{2}\right) G_{k+1}
\end{align*}
$$

Multiplying (6) by $g_{k}\left(x_{k}\right)$ we have

$$
\begin{aligned}
f_{x_{n}}^{k+1}\left(\frac{a_{k+1}+b_{k+1}}{2}\right) g_{k}\left(x_{k}\right) G_{k+1} & \leq \int_{a_{k+1}}^{b_{k+1}} f_{x_{n}}^{k+1}\left(x_{k+1}\right) g_{k}\left(x_{k}\right) g_{k+1}\left(x_{k+1}\right) d x_{k+1} \\
& \leq\left(\frac{f_{x_{n}}^{k+1}\left(a_{k+1}\right)+f_{x_{n}}^{k+1}\left(b_{k+1}\right)}{2}\right) g_{k}\left(x_{k}\right) G_{k+1}
\end{aligned}
$$

Now by integrating on $\left[a_{k}, b_{k}\right]$ we get

$$
\begin{aligned}
& G_{k+1} \int_{a_{k}}^{b_{k}} f_{x_{n}}^{k+1}\left(\frac{a_{k+1}+b_{k+1}}{2}\right) g_{k}\left(x_{k}\right) d x_{k} \\
\leq & \int_{a_{k}}^{b_{k}} \int_{a_{k+1}}^{b_{k+1}} f_{x_{n}}^{k+1}\left(x_{k+1}\right) g_{k}\left(x_{k}\right) g_{k+1}\left(x_{k+1}\right) d x_{k+1} d x_{k} \\
\leq & G_{k+1} \int_{a_{k+1}}^{b_{k+1}}\left(\frac{f_{x_{n}}^{k+1}\left(a_{k+1}\right)+f_{x_{n}}^{k+1}\left(b_{k+1}\right)}{2}\right) g_{k}\left(x_{k}\right) d x_{k} .
\end{aligned}
$$

As $G_{k}>0, G_{k+1}>0$, then divide by $G_{k} G_{k+1}$ we get

$$
\begin{aligned}
& \frac{1}{G_{k}} \int_{a_{k}}^{b_{k}} f_{x_{n}}^{k+1}\left(\frac{a_{k+1}+b_{k+1}}{2}\right) g_{k}\left(x_{k}\right) d x_{k} \\
\leq & \frac{1}{G_{k} G_{k+1}} \int_{a_{k}}^{b_{k}} \int_{a_{k+1}}^{b_{k+1}} f_{x_{n}}^{k+1}\left(x_{k+1}\right) g_{k}\left(x_{k}\right) g_{k+1}\left(x_{k+1}\right) d x_{k+1} d x_{k} \\
\leq & \frac{1}{G_{k}} \int_{a_{k+1}}^{b_{k+1}}\left(\frac{f_{x_{n}}^{k+1}\left(a_{k+1}\right)+f_{x_{n}}^{k+1}\left(b_{k+1}\right)}{2}\right) g_{k}\left(x_{k}\right) d x_{k} .
\end{aligned}
$$

Taking summation from 1 to n we get (5).
If we consider $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \cdots x_{n}$, then inequalities in (5) become equality, which shows these are sharp.

Theorem 2.4. Let $\left(x_{1}, \ldots, x_{n}\right) \in \Delta^{n}$ and $f: \Delta^{n} \rightarrow \mathbb{R}$ be a convex mapping on n-coordinates. Also, let $g_{i}:\left[a_{i}, b_{i}\right] \rightarrow \mathbb{R}$ be an integrable and symmetric function about $\frac{a_{i}+b_{i}}{2}$ for each $i=1, \ldots, n$. Then we have

$$
\begin{align*}
& \sum_{k=1}^{n} \frac{1}{G_{k}} \int_{a_{k}}^{b_{k}}\left(f_{a_{n}}^{k}\left(x_{k}\right)+f_{b_{n}}^{k}\left(x_{k}\right)\right) d x_{k} \tag{7}\\
\leq & \frac{n}{2}(f(\boldsymbol{a})+f(\boldsymbol{b}))+\frac{1}{2} \sum_{k=1}^{n}\left(f_{a_{n}}^{k}\left(b_{k}\right)+f_{b_{n}}^{k}\left(a_{k}\right)\right),
\end{align*}
$$

where $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\boldsymbol{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$. The above inequality is sharp.

Proof. As $f: \Delta^{n} \rightarrow \mathbb{R}$ is a convex mapping on n-coordinates, therefore $f_{x_{n}}^{i}$: $\left[a_{i}, b_{i}\right] \rightarrow \mathbb{R}$ is convex on $\left[a_{i}, b_{i}\right]$ for each $i=1,2,3, \ldots, n$. From Fejér inequality
for each $i=1,2,3, \ldots, n$ we have,

$$
\begin{equation*}
\frac{1}{G_{i}} \int_{a_{i}}^{b_{i}} f_{a_{n}}^{i}\left(x_{i}\right) d x_{i} g_{i}\left(x_{i}\right) \leq \frac{f(\mathbf{a})+f_{a_{n}}^{i}\left(b_{i}\right)}{2} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{G_{i}} \int_{a_{i}}^{b_{i}} f_{b_{n}}^{i}\left(x_{i}\right) d x_{i} g_{i}\left(x_{i}\right) \leq \frac{f_{b_{n}}^{i}\left(a_{i}\right)+f(\mathbf{b})}{2} \tag{9}
\end{equation*}
$$

Adding (8) and (9) we get,

$$
\begin{align*}
& \frac{1}{G_{i}} \int_{a_{i}}^{b_{i}}\left(f_{a_{n}}^{i}\left(x_{i}\right)+f_{b_{n}}^{i}\left(x_{i}\right)\right) g_{i}\left(x_{i}\right) d x_{i} \tag{10}\\
\leq & \frac{1}{2}(f(\mathbf{a})+f(\mathbf{b}))+\frac{1}{2}\left(f_{a_{n}}^{i}\left(b_{i}\right)+f_{b_{n}}^{i}\left(a_{i}\right)\right),
\end{align*}
$$

where $i=1,2, \ldots, n$. Taking sum from 1 to n we get (7).
If we consider $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \cdots x_{n}$, then inequalities in (7) become equality, which shows these are sharp.

A special case of inequalities (4), (5), and (7) is stated in the following, which is main result of $[12$, Theorem 1].

Corollary 2.5. Let $\Delta^{2}=[a, b] \times[c, d]$ and $f: \Delta^{2} \rightarrow \mathbb{R}$ be a convex mapping on 2-coordinates. Also, let $g_{i}:\left[a_{i}, b_{i}\right] \rightarrow \mathbb{R}$ be an integrable and symmetric function about $\frac{a_{i}+b_{i}}{2}$ for each $i=1,2$. Then (3) is valid.

Proof. By putting $n=2$ in Theorem 2.3 and Theorem 2.4, and taking $a_{1}=a$, $b_{1}=b, a_{2}=c$, and $b_{2}=d$, we get the required result.

Remark 2.6. Further if we put $g_{1}(x)=1$ and $g_{2}(x)=1$, then we get main result of [8, Theorem 1].

3. Associated mappings

In this section we are interested to associate some mappings with the generalized Fejér-Hadamard inequality for a convex mapping on n-coordinates.

For $n \geq 2$, let $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right), \mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ and A_{i} denotes arithmetic means of numbers a_{i} and b_{i}, that is,

$$
A_{i}=A\left(a_{i}, b_{i}\right)=\frac{a_{i}+b_{i}}{2}
$$

Also for $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \Delta^{n}:=\prod_{i=1}^{n}\left[a_{i}, b_{i}\right]$ and $\mathbf{t}=\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in$ $[0,1]^{n}$, we consider s_{i} be a point on a segment between x_{i} and A_{i}, that is,

$$
s_{i}=t_{i} x_{i}+\left(1-t_{i}\right) A_{i} .
$$

For the mapping $f: \Delta^{n} \rightarrow \mathbb{R}$ defined in previous section, we can associate a mapping $\widehat{H}:[0 ; 1]^{n} \rightarrow \mathbb{R}$ given by

$$
\widehat{H}(\mathbf{t})=\sum_{k=1}^{n} \frac{1}{G_{k} G_{k+1}} \int_{a_{k}}^{b_{k}} \int_{a_{k+1}}^{b_{k+1}} f(\mathbf{s}) g_{k}\left(x_{k}\right) g_{k+1}\left(x_{k+1}\right) d x_{k+1} d x_{k}
$$

where $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$.
Consider $\widehat{H}_{t_{n}}^{i}:[0,1] \rightarrow \mathbb{R}$, defined by

$$
\widehat{H}_{t_{n}}^{i}(t)=\widehat{H}\left(t_{1}, \ldots, t_{i-1}, t, t_{i+1}, \ldots, t_{n}\right)
$$

We can rewrite $\widehat{H}_{t_{n}}^{i}(t)$ as follows:

$$
\begin{aligned}
& \widehat{H}_{t_{n}}^{i}(t)=\widehat{H}\left(t_{1}, \ldots, t_{i-1}, t, t_{i+1}, \ldots, t_{n}\right) \\
= & \sum_{k=1}^{n} \frac{1}{G_{k} G_{k+1}} \int_{a_{k}}^{b_{k}} \int_{a_{k+1}}^{b_{k+1}} f\left(s_{1}, \ldots, s_{i-1}, t x_{i}+(1-t) A_{i}, s_{i+1}, \ldots, s_{n}\right) \\
& \times g_{k}\left(x_{k}\right) g_{k+1}\left(x_{k+1}\right) d x_{k+1} d x_{k} \\
= & \sum_{k=1}^{n} \frac{1}{G_{k} G_{k+1}} \int_{a_{k}}^{b_{k}} \int_{a_{k+1}}^{b_{k+1}} f_{s_{n}}^{i}\left(t x_{i}+(1-t) A_{i}\right) g_{k}\left(x_{k}\right) g_{k+1}\left(x_{k+1}\right) d x_{k+1} d x_{k} \\
= & \sum_{k=1}^{n} \frac{1}{G_{k} G_{k+1}} \int_{a_{k}}^{b_{k}} \int_{a_{k+1}}^{b_{k+1}} f_{s_{n}}^{i}(\widehat{t}) g_{k}\left(x_{k}\right) g_{k+1}\left(x_{k+1}\right) d x_{k+1} d x_{k},
\end{aligned}
$$

where $\widehat{t}=t x_{i}+(1-t) A_{i}$. We will use this notation throughout the paper. We also need a following lemma given by Levin and Stečkin in [17, p. 200] to get desired results.

Lemma 3.1. Let f be convex on $[a, b]$ and g be symmetric about $(a+b) / 2$ and nonincreasing function on $[a,(a+b) / 2]$. Then

$$
\int_{a}^{b} f(x) g(x) d x \geq \frac{1}{b-a} \int_{a}^{b} f(x) d x \int_{a}^{b} g(x) d x
$$

Theorem 3.2. Let $f: \Delta^{n} \rightarrow \mathbb{R}$ be a convex mapping on n-coordinates on Δ^{n}. Then the mapping \widehat{H} is convex on n-coordinates on $[0,1]^{n}$. We also have

$$
\begin{equation*}
\widehat{H}(\boldsymbol{t}) \geq \sum_{k=1}^{n} f\left(s_{1}, \ldots, s_{i-1}, A_{k}, A_{k+1}, \ldots, s_{n}\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{align*}
\widehat{H}(\boldsymbol{t}) \leq & \sum_{k=1}^{n} \frac{t_{k}+t_{k+1}\left(1-t_{k}\right)}{G_{k} G_{k+1}} \int_{a_{k}}^{b_{k}} \int_{a_{k+1}}^{b_{k+1}} f\left(s_{1}, \ldots, s_{k-1}, x_{k}, x_{k+1}, \ldots, s_{n}\right) \tag{12}\\
& \times g_{k}\left(x_{k}\right) g_{k+1}\left(x_{k+1}\right) d x_{k+1} d x_{k}
\end{align*}
$$

$$
+\sum_{k=1}^{n}\left(1-t_{k}\right)\left(1-t_{k+1}\right) f\left(s_{1}, \ldots, s_{k-1}, A_{k}, A_{k+1}, \ldots, s_{n}\right)
$$

with $n+1 \mapsto 1$.
Proof. Let $u, v \in[0,1]$ and $\alpha, \beta \in[0,1]$ such that $\alpha+\beta=1$, then we have

$$
\begin{aligned}
& \widehat{H}_{t_{n}}^{i}(\alpha u+\beta v) \\
= & \sum_{k=1}^{n} \frac{1}{G_{k} G_{k+1}} \int_{a_{k}}^{b_{k}} \int_{a_{k+1}}^{b_{k+1}} f_{s_{n}}^{i}(\widehat{\alpha u+\beta} v) g_{k}\left(x_{k}\right) g_{k+1}\left(x_{k+1}\right) d x_{k+1} d x_{k}
\end{aligned}
$$

Now

$$
\begin{aligned}
\widehat{\alpha u+\beta} v & =(\alpha u+\beta v) x_{i}+(1-\alpha u-\beta v) A_{i} \\
& =\alpha\left(u x_{i}+(1-u) A_{i}\right)+\beta\left(v x_{i}+(1-v) A_{i}\right) \\
& =\alpha \widehat{u}+\beta \widehat{v} .
\end{aligned}
$$

This gives us

$$
\begin{aligned}
& \widehat{H}_{t_{n}}^{i}(\alpha u+\beta v) \\
= & \sum_{k=1}^{n} \frac{1}{G_{k} G_{k+1}} \int_{a_{k}}^{b_{k}} \int_{a_{k+1}}^{b_{k+1}} f_{s_{n}}^{i}(\alpha \widehat{u}+\beta \widehat{v}) g_{k}\left(x_{k}\right) g_{k+1}\left(x_{k+1}\right) d x_{k+1} d x_{k}
\end{aligned}
$$

Since given that $f_{s_{n}}^{i}$ is convex, therefore we have

$$
\begin{aligned}
& \widehat{H}_{t_{n}}^{i}(\alpha u+\beta v) \\
\leq & \sum_{k=1}^{n} \frac{1}{G_{k} G_{k+1}} \int_{a_{k}}^{b_{k}} \int_{a_{k+1}}^{b_{k+1}}\left(\alpha f_{s_{n}}^{i}(\widehat{u})+\beta f_{s_{n}}^{i}(\widehat{v})\right) g_{k}\left(x_{k}\right) g_{k+1}\left(x_{k+1}\right) d x_{k+1} d x_{k} \\
= & \alpha \widehat{H}_{s_{n}}^{i}(\widehat{u})+\beta \widehat{H}_{s_{n}}^{i}(\widehat{v}) .
\end{aligned}
$$

Which implies $\widehat{H}_{t_{n}}^{i}$ is convex, that is, \widehat{H} is convex on n-coordinates.
To prove inequality (11), we consider

$$
\begin{aligned}
\widehat{H}(\mathbf{t}) & =\sum_{k=1}^{n} \frac{1}{G_{k} G_{k+1}} \int_{a_{k}}^{b_{k}} \int_{a_{k+1}}^{b_{k+1}} f_{s_{n}}^{i}\left(s_{i}\right) g_{k}\left(x_{k}\right) g_{k+1}\left(x_{k+1}\right) d x_{k+1} d x_{k} \\
& =\sum_{k=1}^{n} \frac{1}{G_{k+1}} \int_{a_{k+1}}^{b_{k+1}}\left[\frac{1}{G_{k}} \int_{a_{k}}^{b_{k}} f_{s_{n}}^{i}\left(s_{i}\right) g_{k}\left(x_{k}\right) g_{k+1}\left(x_{k+1}\right) d x_{k}\right] d x_{k+1} .
\end{aligned}
$$

Since f is convex on the k th coordinate and $\frac{1}{G_{k}} \int_{a_{k}}^{b_{k}} g_{k}\left(x_{k}\right) d x_{k}=1$, we apply Jensen's inequality for integrals on k th coordinate to get

$$
\begin{aligned}
& H(\mathbf{t}) \\
\geq & \sum_{k=1}^{n} \frac{1}{G_{k+1}} \int_{a_{k+1}}^{b_{k+1}}\left[f_{s_{n}}^{k}\left(\frac{1}{G_{k}} \int_{a_{k}}^{b_{k}}\left(s_{i}\right) g_{k}\left(x_{k}\right) d x_{k}\right)\right] g_{k+1}\left(x_{k+1}\right) d x_{k+1} .
\end{aligned}
$$

Now it follows from Lemma 3.1, that

$$
\widehat{H}(t) \geq \sum_{k=1}^{n} \frac{1}{G_{k+1}} \int_{a_{k+1}}^{b_{k+1}} f_{s_{n}}^{k}\left(\frac{a_{k}+b_{k}}{2}\right) g_{k+1}\left(x_{k+1}\right) d x_{k+1} .
$$

Now using convexity of f on $(k+1)$ th coordinate. Again applying Jensen's inequality and Lemma 3.1 on $(k+1)$ th coordinate we get inequality in (11).

Now to prove inequality (12), we first use convexity of f on k th coordinate, then on $(k+1)$ th coordinate, we have

$$
\begin{aligned}
\text { (13) } \\
\qquad \begin{aligned}
& \widehat{H}(t) \\
& G_{k} G_{k+1} \int_{a_{k}}^{b_{k}} \int_{a_{k+1}}^{b_{k+1}} f_{s_{n}}^{k}\left(x_{k}\right) g_{k}\left(x_{k}\right) g_{k+1}\left(x_{k+1}\right) d x_{k+1} d x_{k} \\
&+\frac{1-t_{k}}{G_{k} G_{k+1}} \int_{a_{k}}^{b_{k}} \int_{a_{k+1}}^{b_{k+1}} f_{s_{n}}^{k}\left(\frac{a_{k}+b_{k}}{2}\right) g_{k}\left(x_{k}\right) g_{k+1}\left(x_{k+1}\right) d x_{k+1} d x_{k} \\
& \leq \frac{t_{k} t_{k+1}}{G_{k} G_{k+1}} \int_{a_{k}}^{b_{k}} \int_{a_{k+1}}^{b_{k+1}} f\left(s_{1}, \ldots, s_{i-1}, x_{k}, x_{k+1}, s_{k+2}, \ldots, s_{n}\right) \\
& \times g_{k}\left(x_{k}\right) g_{k+1}\left(x_{k+1}\right) d x_{k+1} d x_{k} \\
&+\frac{t_{k}\left(1-t_{k+1}\right)}{G_{k}} \int_{a_{k}}^{b_{k}} f\left(s_{1}, \ldots, s_{i-1}, x_{k}, \frac{a_{k+1}+b_{k+1}}{2}, s_{k+2}, \ldots, s_{n}\right) g_{k}\left(x_{k}\right) d x_{k} \\
&+\frac{t_{k+1}\left(1-t_{k}\right)}{G_{k+1}} \int_{a_{k+1}}^{b_{k+1}} f\left(s_{1}, \ldots, s_{i-1}, A_{k}, x_{k+1}, s_{k+2}, \ldots, s_{n}\right) g_{k}\left(x_{k}\right) d x_{k} \\
&+\frac{\left(1-t_{k}\right)\left(1-t_{k+1}\right)}{G_{k} G_{k+1}} \int_{a_{k}}^{b_{k}} \int_{a_{k+1}}^{b_{k+1}} f\left(s_{1}, \ldots, s_{k-1}, A_{k}, A_{k+1}, s_{k+2}, \ldots, s_{n}\right) \\
& \times g_{k}\left(x_{k}\right) g_{k+1}\left(x_{k+1}\right) d x_{k+1} d x_{k} .
\end{aligned}
\end{aligned}
$$

Now by (4), we can have

$$
\begin{align*}
& \sum_{k=1}^{n} \frac{1}{G_{k+1}} \int_{a_{k+1}}^{b_{k+1}} f\left(s_{1}, \ldots, A_{k}, x_{k+1}, \ldots, s_{n}\right) g_{k}\left(x_{k+1}\right) d x_{k+1} \tag{14}\\
\leq & \sum_{k=1}^{n} \frac{1}{G_{k} G_{k+1}} \int_{a_{k}}^{b_{k}} \int_{a_{k}+1}^{b_{k}+1} f\left(s_{1}, \ldots, x_{k}, x_{k+1}, \ldots, s_{n}\right) g_{k}\left(x_{k}\right) g_{k+1}\left(x_{k+1}\right) d x_{k+1} d x_{k}
\end{align*}
$$

and from the first inequality in Theorem 2.3
(15)

$$
\sum_{k=1}^{n} \frac{1}{G_{k}} \int_{a_{k}}^{b_{k}} f\left(s_{1}, \ldots, x_{k}, A_{k+1}, \ldots, s_{n}\right) g_{k}\left(x_{k+1}\right) d x_{k+1}
$$

$\leq \sum_{k=1}^{n} \frac{1}{G_{k} G_{k+1}} \int_{a_{k}}^{b_{k}} \int_{a_{k}+1}^{b_{k}+1} f\left(s_{1}, \ldots, x_{k}, x_{k+1}, \ldots, s_{n}\right) g_{k}\left(x_{k}\right) g_{k+1}\left(x_{k+1}\right) d x_{k+1} d x_{k}$.
Now using the inequalities (14) and (15) in (13) we get (12).
The particular case of above theorem is the following result, which is Theorem 2.4 given in [12].

Corollary 3.3. Let $f: \Delta^{2} \rightarrow \mathbb{R}$ be a convex function on 2-coordinates. Then the mapping \widehat{H}, defined as
$\widehat{H}(t, s)=\frac{1}{G_{1} G_{2}} \int_{a}^{b} \int_{c}^{d} f\left(t x+(1-t) \frac{a+b}{2}, s y+(1-s) \frac{c+d}{2}\right) g_{1}(x) g_{2}(y) d y d x$, is convex on the coordinates on $[0,1]^{2}$. Further if g_{1} is nonincreasing on $[a$, $(a+b) / 2]$ and g_{2} is nonincreasing on $[c,(c+d) / 2]$, then

$$
\inf _{(t, s) \in[0,1]^{2}} \widehat{H}(t, s)=f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)=\widehat{H}(0,0)
$$

and

$$
\sup _{(t, s) \in[0,1]^{2}} \widehat{H}(t, s)=\frac{1}{G_{1} G_{2}} \int_{a}^{b} \int_{c}^{d} f(x, y) g_{1}(x) g_{2}(y) d y d x=\widehat{H}(1,1) .
$$

Proof. By putting $n=2$ in Theorem 3.2, we get required result.
Remark 3.4. Further if we take $g_{1}(x)=1$ and $g_{2}(x)=1$, then we get Theorem 2 in [8].

Theorem 3.5. Let $f: \Delta^{n} \rightarrow \mathbb{R}$ be a convex mapping on Δ^{n}. Then the mapping \widehat{H} is convex on $[0,1]^{n}$. Also the mapping $\widehat{h}:[0,1] \rightarrow \mathbb{R}$, defined by $\widehat{h}(t)=\widehat{H}(t, \ldots, t)$ is convex and one has the bounds

$$
\begin{equation*}
\widehat{h}(\boldsymbol{t}) \geq \sum_{k=1}^{n} f\left(s_{1}, \ldots, s_{i-1}, A_{k}, A_{k+1}, \ldots, s_{n}\right) \tag{16}
\end{equation*}
$$

and

$$
\begin{align*}
\widehat{h}(\boldsymbol{t}) \leq & \sum_{k=1}^{n} \frac{t(2-t)}{G_{k} G_{k+1}} \int_{a_{k}}^{b_{k}} \int_{a_{k+1}}^{b_{k+1}} f\left(s_{1}, \ldots, s_{k-1}, x_{k}, x_{k+1}, \ldots, s_{n}\right) \tag{17}\\
& \times g_{k}\left(x_{k}\right) g_{k+1}\left(x_{k+1}\right) d x_{k+1} d x_{k} \\
& +\sum_{k=1}^{n}(1-t)^{2} f\left(s_{1}, \ldots, s_{k-1}, A_{k}, A_{k+1}, \ldots, s_{n}\right)
\end{align*}
$$

Proof. Let $\mathbf{u}, \mathbf{v} \in[0,1]^{n}$ and $\alpha, \beta \in[0,1]$ such that $\alpha+\beta=1$. Then

$$
\begin{aligned}
\widehat{H}(\alpha \mathbf{u}+\beta \mathbf{v})= & \sum_{k=1}^{n} \frac{1}{G_{k} G_{k+1}} \int_{a_{k}}^{b_{k}} \int_{a_{k+1}}^{b_{k+1}} f\left(\alpha \widehat{u_{1}+\beta} v_{1}, \ldots, \alpha \widehat{u_{n}+\beta} v_{n}\right) \\
& \times g_{k}\left(x_{k}\right) g_{k+1}\left(x_{k+1}\right) d x_{k+1} d x_{k} .
\end{aligned}
$$

For each $i=1,2, \ldots, n$, we have

$$
\begin{aligned}
\alpha \widehat{u_{i}+\beta} v_{i} & =\left(\alpha u_{i}+\beta v_{i}\right) x_{i}+\left(1-\alpha u_{i}-\beta v_{i}\right) A_{i} \\
& =\alpha\left(u_{i} x_{i}+\left(1-u_{i}\right) A_{i}\right)+\beta\left(v_{i} x_{i}+\left(1-v_{i}\right) A_{i}\right) \\
& =\alpha \widehat{u}_{i}+\beta \widehat{v}_{i} .
\end{aligned}
$$

This gives

$$
\begin{aligned}
H(\alpha \mathbf{u}+\beta \mathbf{v})= & \sum_{k=1}^{n} \frac{1}{G_{k} G_{k+1}} \int_{a_{k}}^{b_{k}} \int_{a_{k+1}}^{b_{k+1}} f\left(\alpha \widehat{u}_{1}+\beta \widehat{v}_{1}, \ldots, \alpha \widehat{u}_{n}+\beta \widehat{v}_{n}\right) \\
& \times g_{k}\left(x_{k}\right) g_{k+1}\left(x_{k+1}\right) d x_{k+1} d x_{k} \\
\leq & \sum_{k=1}^{n} \frac{1}{G_{k} G_{k+1}} \int_{a_{k}}^{b_{k}} \int_{a_{k+1}}^{b_{k+1}}\left(\alpha f\left(\widehat{u}_{1}, \ldots, \widehat{u}_{n}\right)+\beta f\left(\widehat{v}_{1}, \ldots, \widehat{v}_{n}\right)\right) \\
& \times g_{k}\left(x_{k}\right) g_{k+1}\left(x_{k+1}\right) d x_{k+1} d x_{k} \\
= & \alpha H(\mathbf{u})+\beta H(\mathbf{v})
\end{aligned}
$$

This shows that \widehat{H} is convex on $[0,1]^{n}$. Similar to above, we can show that \widehat{h} is convex on $[0,1]$ and using bounds of mapping \widehat{H} in Theorem 3.2 we can get bounds of mapping \widehat{h}.

The particular case of above theorem is the following result, which is Theorem 2.6 in [12].
Corollary 3.6. Suppose that $f: \Delta^{2} \rightarrow \mathbb{R}$ is a convex mapping on 2-coordinates. Let $\widehat{h}:[0,1] \rightarrow \mathbb{R}$ be the mapping defined as $\widehat{h}(t)=\widehat{H}(t, t)$, then \widehat{h} is convex on coordinates on Δ. Also if g_{1} is nonincreasing on $[a,(a+b) / 2]$ and g_{2} is nonincreasing on $[c,(c+d) / 2]$, then

$$
\inf _{t \in[0,1]} \widehat{h}(t)=f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)=\widehat{H}(0,0)
$$

and

$$
\sup _{t \in[0,1]} h_{g_{1} g_{2}}(t)=\frac{1}{G_{1} G_{2}} \int_{a}^{b} \int_{c}^{d} f(x, y) g_{1}(x) g_{2}(y) d y d x=H_{g_{1} g_{2}}(1,1)
$$

Proof. By putting $n=2$ in Theorem (3.5), we get (3.6).
Remark 3.7. Further if we take $g_{1}(x)=1$ and $g_{2}(x)=1$, the we obtain Theorem 3 in [8].

References

[1] S. Abramovich, G. Farid, and J. Pečarić, More about Jensen's inequality and Cauchy's means for superquadratic functions, J. Math. Inequal. 7 (2013), no. 1, 11-14.
[2] S. Banić, Mappings connected with Hermite-Hadamard inequalities for superquadratic functions, J. Math. Inequal. 3 (2009), no. 4, 577-589.
[3] S. I. Butt, J. Pečarić, and A. U. Rehman, Non-symmetric Stolarsky means, J. Math. Inequal. 7 (2013), no. 2, 227-237.
[4] F. Chen and S. Wu, Hermite-Hadamard type inequalities for harmonically s-convex functions, Sci. World J. 2014 (2014), no. 7, Article ID 279158.
[5] S. S. Dragomir, A mapping in connection to Hadamard's inequalities, Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 128 (1991), no. 2, 17-20.
[6] , On Hadamard's inequalities for convex functions, Math. Balkanica (N.S.) 6 (1992), no. 3, 215-222.
[7] , Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl. 167 (1992), no. 1, 49-56.
[8] , On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese J. Math. 5 (2001), no. 4, 775-788.
[9] , Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Proyecciones 34 (2015), no. 4, 323-341.
[10] S. S. Dragomir and A. McAndrew, Refinements of the Hermite-Hadamard inequality for convex functions, J. Inequal. Pure Appl. Math. 6 (2005), no. 5, Article 140, 6 pp.
[11] S. S. Dragomir, J. E. Pečarić, and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math. 21 (1995), no. 3, 335-341.
[12] G. Farid, M. Marwan, and A. U. Rehman, Fejér-Hadamard inequality for convex functions on the coordinates in a rectangle from the plane, Int. J. Analysis Appl. 10 (2016), no. 1, 40-47.
[13] L. Fejér, Über die Fourierreihen. II, Math. Naturwiss Anz Ungar. Akad. Wiss. 24 (1906), 369-390.
[14] D.-Y. Hwang, K.-L. Tseng, and G.-S. Yang, Some Hadamard's inequalities for coordinated convex functions in a rectangle from the plane, Taiwanese J. Math. 11 (2007), no. 1, 63-73.
[15] M. A. Noor, K. I. Noor, and M. U. Awan, Integral inequalities for coordinated harmonically convex functions, Complex Var. Elliptic Equ. 60 (2015), no. 6, 776-786.
[16] M. A. Noor, F. Qi, and M. U. Awan, Some Hermite-Hadamard type inequalities for log-h-convex functions, Analysis (Berlin) 33 (2013), no. 4, 367-375.
[17] J. E. Pečarić, F. Proschan, and Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, New York, 1992.
[18] M. Tunç, On some new inequalities for convex functions, Turkish J. Math. 36 (2012), no. 2, 245-251.

Ghulam Farid
COMSATS Institute of Information Technology
Attock Campus
Pakistan
E-mail address: faridphdsms@hotmail.com, ghlmfarid@ciit-attock.edu.pk
Atiq Ur Rehman
COMSATS Institute of Information Technology
Attock Campus
Pakistan
E-mail address: atiq@mathcity.org

[^0]: Received March 13, 2015
 2010 Mathematics Subject Classification. 26A51, 26D15, 65D30.
 Key words and phrases. convex functions, Hadamard inequality, convex functions on coordinates.

