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STABILITY OF (α, β, γ)-DERIVATIONS ON LIE C∗-ALGEBRA

ASSOCIATED TO A PEXIDERIZED QUADRATIC TYPE

FUNCTIONAL EQUATION

Nasrin Eghbali and Somayeh Hazrati

Abstract. In this article, we considered the stability of the following
(α, β, γ)-derivation

αD[x, y] = β[D(x), y] + γ[x,D(y)]

and homomorphisms associated to the quadratic type functional equation

f(kx+ y) + f(kx+ σ(y)) = 2kg(x) + 2g(y), x, y ∈ A,

where σ is an involution of the Lie C∗-algebra A and k is a fixed positive
integer. The Hyers-Ulam stability on unbounded domains is also studied.
Applications of the results for the asymptotic behavior of the generalized
quadratic functional equation are provided.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question
of Ulam [16] in 1940, concerning the stability of group homomorphisms: Let
(G1, ·) be a group and (G2, ∗) be a metric group with metric d(·, ·). Given
ε > 0, does there exist δ > 0, such that if a mapping h : G1 → G2 satisfies
the inequality d(h(x · y), h(x) ∗ h(y)) < δ for all x, y ∈ G1, then there exists a
homomorphism H : G1 → G2 with d(h(x), H(x)) < ε for all x ∈ G1?

A C∗-algebra A endowed with the Lie product

[x, y] = xy − yx

on A is called a Lie C∗-algebra. Let A be a Lie C∗-algebra. A C-linear mapping
D : A → A is called a Lie derivation of A if D : A → A satisfies

D[x, y] = [D(x), y] + [x,D(y)]
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for all x, y ∈ A. Following a C-linear mapping D : A → A is called an (α, β, γ)-
derivation of A if there exist α, β, γ ∈ C such that

αD[x, y] = β[D(x), y] + γ[x,D(y)]

for all x, y ∈ A.
The terminology Hyers-Ulam-Rassias stability originates from these histor-

ical backgrounds. Since then, a great deal of works has been published by a
number of mathematicians for other functional equations (see for example [3],
[4], [6], [7], [8], [9], [12] and [13]).

A Hyers-Ulam stability theorem for the quadratic functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y), x, y ∈ A

was proved by Skof [14] and later by Jung [10] on unbounded domains.
Recently, the functional equation

(1.1) f(kx+ y) + f(kx− y) = 2kf(x) + 2f(y), x, y ∈ A

was solved by Lee et al. [11]. Indeed, they proved the Hyers-Ulam-Rassias
stability theorem of equation (1.1).

Throughout this paper, let k denote a fixed positive integer and T 1 = {z ∈
C : |z| = 1}. Let A be a Lie C∗-algebra and σ : A → A be an automorphism of
A such that σ(σ(x)) = x for all x ∈ A.

The purpose of the present paper is to extend the results mentioned due to
Lee et al. [11] to the generalized quadratic functional equation

(1.2) f(kx+ y) + f(kx+ σ(y)) = 2f(x) + 2f(y), x, y ∈ A.

It’s clear that equation (1.2) is a proper extension of equation (1.1). The
following equation

f(x+ y) + f(x+ σ(y)) = 2f(x) + 2f(y), x, y ∈ A

has been studied by Stetkaer [15] and the Hyera-Ulam-Rassias stability of this
equation has been obtained by Bouikhalene et al. [1, 2].

2. Hyers-Ulam stability of Pexiderized quadratic type functional

equation

Lemma 2.1. Let X and Y be linear spaces and f : X → Y be an additive

mapping such that f(µx) = µf(x) for all x ∈ X and any µ ∈ T 1. Then the

mapping f is C-linear.

Proof. See [5]. �

Theorem 2.2. Let f, g : A → A be mappings with f(0) = 0 and ϕ : A7 →
[0,∞) be a function satisfying:

(2.1)

lim
n→∞

1

k2n
ϕ(knx, kny, knu, knv, knw, knz, knt) = 0,

ϕ(0, 0, 0, 0, 0, 0, x) ≤ δ,

‖ f(kx+ y) + f(kx+ σ(y))− 2kg(x)− 2g(y) ‖≤ δ,
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and

‖ αf(xy)− βf(x)y − γxf(y) + αf(uv)− βuf(v)− γf(u)v

+ f(µw + z)− µf(w)− f(z) + f(t)−
1

k
f(kt) ‖(2.2)

≤ ϕ(x, y, u, v, w, z, t)

for all x, y, u, v, w, z, t ∈ A and any µ ∈ T 1. Then there exists a unique

(α, β, γ)-derivation D : A → A, such that

(2.3)

‖ f(x)−D(x) ‖ ≤ δ
k3 + 4k2 + k − 2

2k(k2 − 1)
,

‖ g(x)−D(x) ‖ ≤
δ

2k

3k2 + 3k − 2

2k(k2 − 1)
.

Proof. By letting respectively y = 0 and x = y = 0 in (2.1), we get

‖ g(x)−
1

k
{f(kx)− g(0)} ‖≤

δ

2k
, x ∈ A

and

‖ g(0) ‖≤
δ

2(k + 1)
, x ∈ A.

So, we deduce that

(2.4) ‖ g(x)−
1

k
{f(kx)} ‖≤

δ

2k
+

δ

2k(k + 1)
.

By applying the inductive assumption we prove

‖ g(x)−
1

kn
{f(knx)} ‖≤ δ[

1

2k
+

1

2k(k + 1)
+

1

k
ϕ(0, 0, 0, 0, 0, 0, kx)(2.5)

+ · · ·+
1

k(n−1)
ϕ(0, 0, 0, 0, 0, 0, kn−1x)]

for all n ∈ N. From (2.4) it follows that (2.5) is true for n = 1. Assume now
that (2.5) holds for n ∈ N. The inductive step must be demonstrated to hold
for n+ 1, that is

‖ g(x)−
1

kn+1
{f(kn+1x)} ‖

≤ ‖ g(x)−
1

kn
{f(knx)} ‖ +

1

kn
‖ g(knx)−

1

k
{f(kn+1x)} ‖

≤ δ[
1

2k
+

1

2(k + 1)
) +

1

k
ϕ(0, 0, 0, 0, 0, 0, kx)

+ · · ·+
1

kn−1
ϕ(0, 0, 0, 0, 0, 0, kn−1x)] +

1

kn
ϕ(0, 0, 0, 0, 0, 0, knx).

This proves the validity of the inequality (2.5). Let us define the sequence of
functions

fn(x) =
1

kn
{f(knx)}, x ∈ A, n ∈ N.
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We will show that {fn(x)}n∈N is a Cauchy sequence for every x ∈ A. By
using (2.4), we have

‖ fn+1(x)− fn(x) ‖ = ‖
1

kn+1
{f(kn+1x)} −

1

kn
{f(knx)} ‖

=
1

kn
‖ {f(knx)} −

1

k
{f(kn+1x)} ‖

≤
δ

kn
.

It follows that {fn(x)}n∈N is a Cauchy sequence for every x ∈ A. However,
A is a complete normed space, thus the limit function D(x) = limn→∞ fn(x)
exists for every x ∈ A. Assume now that there exist two mappings Di : A →
A (i = 1, 2) satisfying (1.2) and (2.3). By mathematical induction, we can
easily verify that

(2.6) Di(k
nx) = knDi(x), (i = 1, 2).

For all x ∈ A and all n ∈ N,we have

‖ D1(x) −D2(x) ‖ =
1

kn
‖ D1(k

nx)−D2(k
nx) ‖

≤
1

kn
‖ D1(k

nx)− g(knx) ‖ +
1

kn
‖ D2(k

nx)− g(knx) ‖

≤
δ

kn+1

3k2 + 3k − 2

k2 − 1
.

If we let n → +∞, we get D1(x) = D2(X) for all x ∈ A. We show that
D : A → A is (α, β, γ)-derivation. By setting x = y = u = v = 0 and using
(2.2) we have

(2.7) ‖ f(µw + z)− µf(w)− f(z) ‖≤ ϕ(0, 0, 0, 0, w, z, 0).

Replacing w, z in (2.7) by knw, knz respectively, and divide both sides by
kn we obtain

(2.8) D(µw + z) = µD(w) +D(z)

for any µ ∈ T 1 and all w, z ∈ A. Letting µ = 1 in (2.8), we conclude that D is
additive. Set z = 0, we have D(µw) = µD(w). Thus, Lemma 2.1 implies that
D is C-linear.

By using the inequality (2.2) we get

‖ αf [x, y]− β[f(x), y]− γ[x, f(y)] ‖(2.9)

= ‖ αf(xy − yx)− β(f(x)y − yf(x))− γ(xf(y)− f(y)x ‖

= ‖ αf(xy)− αf(yx)− βf(x)y + βyf(x) − γxf(y) + γf(y)x ‖

≤ ‖ αf(xy)− βf(x)y − γxf(y) ‖ + ‖ αf(yx)− βyf(x)− γf(y)x ‖

≤ ϕ(x, y, 0, 0, 0, 0, 0) + ϕ(0, 0, x, y, 0, 0, 0).
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Replacing x, y by knx, kny respectively in (2.9), and divide both sides by
k2n we obtain

αD[x, y] = β[D(x), y] + γ[x,D(y)]

for all x, y ∈ A. Hence D is a (α, β, γ)-derivations on A. �

Corollary 2.3. Let 0 < q < 2, η > 0 and f, g : A → A be mappings with

f(0) = 0 satisfying:

‖ f(kx+ y) + f(kx+ y)− 2kg(x)− 2g(y) ‖≤ δ,

and

‖ αf(xy)− βf(x)y − γxf(y) + αf(uv)− βuf(v)− γf(u)v

+ f(µw + z)− µf(w)− f(z) + f(t)−
1

k
f(kt) ‖

≤ η ‖ x ‖
q

7 ‖ y ‖
q

7 ‖ u ‖
q

7 ‖ v ‖
q

7 ‖ w ‖
q

7 ‖ z ‖
q

7 ‖ t ‖
q

7

for all x, y, u, v, w, z, t ∈ A and any µ ∈ T 1. Then there exists a unique

(α, β, γ)-derivation D : A → A, such that

‖ f(x)−D(x) ‖ ≤ δ
k3 + 4k2 + k − 2

2k(k2 − 1)
,

‖ g(x)−D(x) ‖ ≤
δ

2k

3k2 ++3k − 2

k2 − 1
, x ∈ A.

Proof. It is a desired result of Theorem 2.2. �

Theorem 2.4. Let f, g : A → A be mappings with f(0) = g(0) = 0 and

ϕ : A7 → [0,∞) is a function satisfying:

(2.10)

lim
n→∞

1

k2n
ϕ(knx, kny, knu, knv, knw, knz, knt) = 0,

ϕ(0, 0, 0, 0, 0, 0, x) ≤ θ ‖ x ‖p,

‖ f(kx+ y) + f(kx+ σ(y))− 2kg(x)− 2g(y) ‖≤ θ(‖ x ‖p + ‖ y ‖p)

and

(2.11)

‖ αf(xy)− βf(x)y − γxf(y) + αf(uv)− βuf(v)− γf(u)v

+ f(µw + z)− µf(w)− f(z) + f(t)−
1

k
f(kt) ‖

≤ ϕ(x, y, u, v, w, z, t)

for some θ ≥ 0, p ∈ (0, 1) and for all x, y, w, z, u, v, t ∈ A and any µ ∈ T 1.

Then there exists a unique (α, β, γ)-derivation D : A → A, such that

(2.12)
‖ f(x)−D(x) ‖ ≤

θ

2

2kp+1 − kp + k2−p

k2 − kp+1
‖ x ‖p,

‖ g(x)−D(x) ‖ ≤
θ

2k

k1−p + 2k − 1

k1−p − 1
‖ x ‖p, x ∈ A.
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Proof. Suppose that f satisfies the inequality (2.10). Letting x = y = 0 in
(2.10), we get f(0) = 0. Putting y = 0 in (2.10), we get

(2.13) ‖ 2f(kx)− 2kg(x) ‖≤ θ ‖ x ‖p

for all x ∈ A. So

(2.14) ‖ g(x)−
1

k
f(kx) ‖≤

θ

2k
‖ x ‖p

for all x ∈ A. By mathematical induction we verify that

(2.15) ‖ g(x)−
1

kn
f(knx) ‖≤ θ[

1

2k
+

1

k1−p
+ · · ·+

1

k(n−1)(1−p)
] ‖ x ‖p

holds for all n ∈ N. Next, we will show that the sequence of functions gn(x) =
1
kn

g(knx) is a Cauchy sequence for every x ∈ A. By using the inequality (2.14),
we get

‖ gn+1(x)− gn(x) ‖ = ‖
1

kn+1
f(kn+1x)−

1

kn
f(knx) ‖

=
1

kn
‖ f(knx)−

1

k
f(kn+1x) ‖

≤
θ

kn(1−p)
‖ x ‖p .

Consequently, {gn(x)}n∈N is a Cauchy sequence for all x ∈ A. Since A is
a complete normed space, the limit function D(x) = limn→∞ gn(x) exists for
every x ∈ A. By using the same method as in the proof of Theorem 2.2, D is
a unique (α, β, γ)-derivation. �

Corollary 2.5. Let 0 < q < 2, η > 0 and f, g : A → A be mappings such that

f(0) = 0 and

‖ f(kx+ y) + f(kx− y)− 2kg(x)− 2g(y) ‖≤ θ(‖ x ‖p + ‖ y ‖p),

and also

‖ αf(xy)− βf(x)y − γxf(y) + αf(uv)− βuf(v)− γf(u)v

+ f(µw + z)− µf(w)− f(z) + f(t)−
1

k
f(kt) ‖

≤ η ‖ x ‖
q

7 ‖ y ‖
q

7 ‖ u ‖
q

7 ‖ v ‖
q

7 ‖ w ‖
q

7 ‖ z ‖
q

7 ‖ t ‖
q

7

for some θ ≥ 0, p ∈ (0, 1) and for all x, y, u, v, w, z, t ∈ A. then there exists a

unique (α, β, γ)-derivation D : A → A, such that

‖ f(x)−D(x) ‖ ≤
θ

2

2kp+1 − kp + k2−p

k2 − kp+1
‖ x ‖p,

‖ g(x)−D(x) ‖ ≤
θ

2k

k1−p + 2k − 1

k1−p − 1
‖ x ‖p, x ∈ A.

Proof. It is a desired result of Theorem 2.4. �
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Theorem 2.6. Let f, g : A → A be mappings with f(0) = 0 and ϕ : A7 →
[0,∞) is a function satisfying:

(2.16)

lim
n→∞

k2nϕ(
x

kn
,
y

kn
,
u

kn
,
v

kn
,
w

kn
,
z

kn
,
t

kn
) = 0,

ϕ(0, 0, 0, 0, 0, 0, kx) ≤ θ ‖ x ‖p,

‖ f(kx+ y) + f(kx+ σ(y)) − 2kg(x)− 2g(y) ‖≤ θ(‖ x ‖p + ‖ y ‖p),

and

(2.17)

‖ αg(xy)− βg(x)y − γxg(y) + αg(uv)− βug(v)− γg(u)v

+ g(µw + z)− µg(w)− g(z) + g(t)− kg( t
k
) ‖

≤ ϕ(x, y, u, w,w, z, t)

for some θ ≥ 0, p > 1 and for all x, y, u, v, w, z, t ∈ A. Then there exists a

unique (α, β, γ)-derivation D : A → A, such that

(2.18)
‖ f(x)−D(x) ‖ ≤

θ

2

1− k1−p + 2k

kp − k
‖ x ‖p,

‖ g(x)−D(x) ‖ ≤
θ

2

kp − k2−p + 2k2

kp+1 − k2
‖ x ‖p, x ∈ A.

Proof. Suppose that f satisfies the inequality (2.16). Letting x = y = 0 in
(2.16), we get f(0) = 0. Putting y = 0 in (2.16), we get

‖ 2f(kx)− 2kg(x) ‖≤ θ ‖ x ‖p,

and

(2.19) ‖ f(x)− kg(x
k
) ‖≤

θ

2kp
‖ x ‖p

for all x ∈ A. By mathematical induction we verify that

(2.20) ‖ f(x)− kng( x
kn

) ‖≤ θ[
1

2kp
+ k1−p + · · ·+ k(n−1)(1−p)] ‖ x ‖p

holds for all n ∈ N. Next, we will show that the sequence of functions gn(x) =
kng( x

kn
) is a Cauchy sequence for every x ∈ A. By using the inequality (2.19),

we get

‖ gn+1(x)− gn(x) ‖ = ‖ kn+1g( x
kn+1 )− kng( x

kn
) ‖

= kn ‖ g( x
kn

)− kg( x
kn+1 ) ‖

≤
θ

kn(p−1)
‖ x ‖p .

Consequently, {gn(x)}n∈N is a Cauchy sequence for all x ∈ A. Since A is
a complete normed space, the limit function D(x) = limn→∞ gn(x) exists for
every x ∈ A. Assume now that there exist two mappings Di : A → A (i = 1, 2)
satisfying (2.18). By mathematical induction, we can easily verify that

(2.21) Di(x) = knDi(
x
kn

), (i = 1, 2).
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For all x ∈ A and all n ∈ N, we have

‖ D1(x) −D2(x) ‖ = kn ‖ D1(
x
kn

)−D2(
x
kn

) ‖

≤ kn ‖ D1(
x
kn

)− f( x
kn

) ‖ +kn ‖ D2(
x
kn

)− f( x
kn

) ‖

≤
θ

kn(p−1)

1− k1−p + 2k

kp − k
‖ x ‖p .

If we let n → +∞, we get D1(x) = D2(X) for all x ∈ A. We show that
D : A → A is (α, β, γ)-derivation. By setting x = y = u = v = 0 and equation
(2.17) we have

(2.22) ‖ g(µw + z)− µg(w)− g(z) ‖≤ ϕ(0, 0, 0, 0, w, z, 0).

Replacing w, z in (2.22) by w
kn

, z
kn

respectively, and divide both sides by kn

we obtain

(2.23) D(µw + z) = µD(w) +D(z)

for any µ ∈ T 1 and all w, z ∈ A. Letting µ = 1 in (2.23), we conclude that
D is additive. By setting z = 0, we have D(µw) = µD(w). Thus, Lemma 2.1
implies that D is C-linear. By using the inequality (2.17) we get

‖ αg[x, y]− β[g(x), y] − γ[x, g(y)] ‖(2.24)

= ‖ αg(xy − yx)− β(g(x)y − yg(x))− γ(xg(y)− g(y)x ‖

= ‖ αg(xy)− αg(yx)− βg(x)y + βyg(x)− γxg(y) + γg(y)x ‖

≤ ‖ αg(xy)− βg(x)y − γxg(y) ‖ + ‖ αg(yx)− βyg(x)− γg(y)x ‖

≤ ϕ(x, y, 0, 0, 0, 0, 0) + ϕ(0, 0, x, y, 0, 0, 0).

Replacing x, y in (2.24) by x
kn

, y
kn

respectively and dividing both sides by

k2n we obtain

αD[x, y] = β[D(x), y] + γ[x,D(y)]

for all x, y ∈ A. Hence D is a (α, β, γ)-derivations on A. �

Corollary 2.7. Let 0 < q < 2, η > 0 and f, g : A → A are functions such that

f(0) = 0 and

‖ f(kx+ y) + f(kx− y)− 2kg(x)− 2g(y) ‖≤ θ(‖ x ‖p + ‖ y ‖p),

and also

‖ αg(xy)− βg(x)y − γxg(y) + αg(uv)− βug(v)− γg(u)v

+ g(µw + z)− µg(w)− g(z) + g(t)− kg( t
k
) ‖

≤ η ‖ x ‖
q

7 ‖ y ‖
q

7 ‖ u ‖
q

7 ‖ v ‖
q

7 ‖ w ‖
q

7 ‖ z ‖
q

7 ‖ t ‖
q

7

for some θ ≥ 0, p > 1 x, y, u, v, w, z, t ∈ A and µ ∈ T 1. Then there exists a

unique (α, β, γ)-derivation D : A → A, such that

‖ f(x)−D(x) ‖≤
θ

2

1− k1−p + 2k

kp − k
‖ x ‖p
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and

‖ g(x)−D(x) ‖≤
θ

2

kp − k2−p + 2k2

kp+1 − k2
‖ x ‖p, x ∈ A.

Proof. It is a desired result of Theorem 2.6 �

3. Hyers-Ulam stability of quadratic equation on unbounded

domains

In this section, we investigate the Hyers-Ulam stability of equation (1.2) on
unbounded domains {(x, y) ∈ A2 : ‖ x ‖ + ‖ y ‖≥ d}.

Theorem 3.1. Let d > 0 be given. Assume that mappings f : A → A and

ϕ : A6 → [0,∞) satisfy the following:

(3.1) lim
n→∞

1

k2n
ϕ(knx, kny, knu, knv, knw, knz) = 0,

(3.2) ‖ f(kx+ y) + f(kx+ σ(y)) − 2kf(x)− 2f(y) ‖≤ δ,

and

(3.3)

‖ αf(xy)− βf(x)y − γxf(y) + αf(uv)− βuf(v)− γf(u)v

+ f(µw + z)− µf(w)− f(z) ‖

≤ ϕ(x, y, u, v, w, z)

for all x, y, u, v, w, z ∈ A with ‖ x ‖ + ‖ y ‖≥ d. Then there exists a unique

(α, β, γ)-derivation D : A → A, such that

(3.4) ‖ f(x)−D(x) ‖≤
2δ

k

k + 1

k − 1
, x ∈ A.

Proof. Let x, y ∈ A such that 0 <‖ x ‖ + ‖ y ‖< d. We choose z = 2nx if
x 6= 0 or z = 2ny if y 6= 0. At first we have

‖
z

k
‖ + ‖ kx+ y ‖≥ d, ‖

z

k
‖ + ‖ kx+ σ(y) ‖≥ d, ‖ x ‖ + ‖ z + σ(y) ‖≥ d,

‖ x ‖ + ‖ y + z ‖≥ d, ‖
z

k
‖ + ‖ y ‖≥ d, ‖ kx+ σ(y) + σ(z) ‖≥ d.

From inequality (3.1) we get

2[f(kx+ y) + f(kx+ σ(y)) − 2kf(x)− 2f(y)

= − [f(z + kx+ y) + f(z + σ(kx) + σ(y))− 2kf( z
k
)− 2f(kx+ y)]

− [f(z + kx+ σ(y)) + f(z + σ(kx) + y)− 2kf( z
k
)− 2f(kx+ σ(y))]

+ [f(kx+ z + σ(y)) + f(kx+ σ(z) + σ(y))− 2kf(x)− 2f(z + σ(y))]

+ [f(kx+ y + z) + f(kx+ σ(y) + σ(z))− 2kf(x)− 2f(y + z)]

+ 2[f(z + y) + f(z + σ(y))− 2kf( z
k
)− 2f(y)]

+ [f(z + σ(kx) + σ(y))− f(kx+ y + σ(z))− 2kf(0)]

+ [f(σ(kx) + z + y)− f(kx+ σ(y) + σ(z))− 2kf(0)].
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So
‖ f(kx+ y) + f(kx+ σ(y))− 2kf(x)− 2f(y) ‖≤ 4δ

for x, y ∈ A with x 6= 0 and y 6= 0. Now, if x = y = 0, we use the following
relation with an arbitrary z ∈ A such that ‖ z ‖= kd

2[f(0) + f(0)− 2kf(0)− 2f(0)]

= [f(z) + f(σ(z))− 2kf(0)− 2f(z)] + [f(z)− f(σ(z))− 2kf(0)]

to obtain
‖ 2kf(0) ‖≤ δ.

Consequently, the inequality

‖ f(kx+ y) + f(kx+ σ(y))− 2kf(x)− 2f(y) ‖≤ 4δ

holds for all x, y ∈ A. By letting y = 0 (resp. x = y = 0) in (3.2), we get

‖ f(x)−
1

k
{f(kx)− f(0)} ‖≤

δ

2k
, x ∈ A.

and

‖ f(0) ‖≤
δ

2k
, x ∈ A.

So, we deduce that

(3.5) ‖ f(x)−
1

k
{f(kx)} ‖≤

δ

2k
+

δ

2k2
, x ∈ A.

By applying the inductive assumption we prove

(3.6) ‖ f(x)−
1

kn
{f(knx)} ‖≤

δ

2k
(1 +

1

k
)[1 +

1

k
+ · · ·+

1

k(n−1)
]

for all n ∈ N. From (3.5) it follows that (3.6) is true for n = 1. Assume now
that (3.6) holds for n ∈ N. The inductive step must be demonstrated to hold
for n+ 1, that is

‖ f(x)−
1

kn+1
{f(kn+1x)} ‖

≤ ‖ f(x)−
1

kn
{f(knx)} ‖ +

1

kn
‖ f(knx) −

1

k
{f(kn+1x)} ‖

≤
δ

2k
(1 +

1

k
)[1 +

1

k
+ · · ·+

1

k(n−1)
] +

1

kn
δ

2k
(1 +

1

k
)

=
δ

2k
(1 +

1

k
)[1 +

1

k
+ · · ·+

1

kn
].

This proves the validity of the inequality (3.6). Let us define the sequence
of functions

fn(x) =
1

kn
{f(knx)}, x ∈ A, n ∈ N.

We will show that {fn(x)}n∈N is a Cauchy sequence for every x ∈ A. By
using (3.5), we have

‖ fn+1(x)− fn(x) ‖ = ‖
1

kn+1
{f(kn+1x)} −

1

kn
{f(knx)} ‖
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=
1

kn
‖ {f(knx)} −

1

k
{f(kn+1x)} ‖

≤
δ

2k
(1 +

1

k
)
1

kn
.

It follows that {fn(x)}n∈N is a Cauchy sequence for every x ∈ A. However,
A is a complete normed space, thus the limit function D(x) = limn→∞ fn(x)
exists for every x ∈ A. Assume now that there exist two mappings Di : A → A

(i = 1, 2) satisfying (3.1) and (3.4). By mathematical induction, we can easily
verify that

(3.7) Di(k
nx) = knDi(x), (i = 1, 2).

For all x ∈ A and all n ∈ N,we have

‖ D1(x) −D2(x) ‖ =
1

kn
‖ D1(k

nx)−D2(k
nx) ‖

≤
1

kn
‖ D1(k

nx)− f(knx) ‖ +
1

kn
‖ D2(k

nx)− f(knx) ‖

≤
δ

kn+1

k + 1

k − 1
.

If we let n → +∞, we get D1(x) = D2(x) for all x ∈ A. We show that
D : A → A is an (α, β, γ)-derivation. By setting x = y = u = v = 0 and using
(3.3) we have

(3.8) ‖ f(µw + z)− µf(w)− f(z) ‖≤ ϕ(0, 0, 0, 0, w, z).

Replacing w, z in (3.8) by knw, knz respectively, and divide both sides by
kn we obtain

(3.9) D(µw + z) = µD(w) +D(z)

for any µ ∈ T 1 and all w, z ∈ A. Letting µ = 1 in (3.9), we conclude that D is
additive. Set z = 0, we have D(µw) = µD(w). Thus, Lemma 2.1 implies that
D is C-linear. By using the inequality (3.3) we get

‖ αf [x, y]− β[f(x), y] − γ[x, f(y)] ‖(3.10)

= ‖ αf(xy − yx)− β(f(x)y − yf(x))− γ(xf(y)− f(y)x ‖

= ‖ αf(xy)− αf(yx)− βf(x)y + βyf(x)− γxf(y) + γf(y)x ‖

≤ ‖ αf(xy)− βf(x)y − γxf(y) ‖ + ‖ αf(yx)− βyf(x)− γf(y)x ‖

≤ ϕ(x, y, 0, 0, 0, 0) + ϕ(0, 0, x, y, 0, 0).

Replacing x, y by knx, kny respectively in (3.10), and divide both sides by
k2n and then try taking the limit as n → ∞, we obtain

αD[x, y] = β[D(x), y] + γ[x,D(y)]

for all x, y ∈ A. Hence D is a (α, β, γ)-derivations on A. �
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Corollary 3.2. Let d > 0, q > 1, η > 0 and f : A → A is a function such that

‖ f(kx+ y) + f(kx+ y)− 2kf(x)− 2f(y) ‖≤ δ,

and

‖ αf(xy)− βf(x)y − γxf(y) + αf(uv)− βuf(v)− γf(u)v

+ f(µw + z)− µf(w)− f(z)||

≤ η||x||
q

7 ||y||
q

7 ||u||
q

7 ||v||
q

7 ||w||
q

7 ||z||
q

7 ||t||
q

7

for all x, y, u, v, w, z ∈ A and any µ ∈ T 1 with ‖ x ‖ + ‖ y ‖≥ d. Then there

exists a unique (α, β, γ)-derivation D : A → A, such that

‖ f(x)−D(x) ‖≤
2δ

k

k + 1

k − 1
, x ∈ A.

Proof. It is a desired result of Theorem 3.1 �
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