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SOME STRONG CONVERGENCE RESULTS OF

RANDOM ITERATIVE ALGORITHMS WITH ERRORS

IN BANACH SPACES

Renu Chugh, Vivek Kumar, and Satish Narwal

Abstract. In this paper, we study the strong convergence and stability
of a new two step random iterative scheme with errors for accretive Lips-
chitzian mapping in real Banach spaces. The new iterative scheme is more
acceptable because of much better convergence rate and less restrictions
on parameters as compared to random Ishikawa iterative scheme with
errors. We support our analytic proofs by providing numerical exam-
ples. Applications of random iterative schemes with errors to variational
inequality are also given. Our results improve and establish random gen-
eralization of results obtained by Chang [4], Zhang [31] and many others.

1. Introduction and preliminaries

The machinery of random fixed point theory provides a convenient way of
modelling many problems arising in non-linear analysis, probability theory and
for solution of random equations in applied sciences. With the recent rapid
developments in random fixed point theory, there has been a renewed interest
in random iterative schemes [5, 6, 7, 22, 23, 24, 26]. In linear spaces, Mann
and Ishikawa iterative schemes are two general iterative schemes which have
been successfully applied to fixed point problems [1, 2, 13, 14]. In recent, many
stability and convergence results of iterative schemes have been established,
using Lipschitz accretive (or pseudo-contractive) mapping in Banach spaces
[4, 8, 31]. Since in deterministic case the consideration of error terms is an
important part of any iterative scheme, therefore motivated by the work of

Ćirić [11, 12, 13, 14, 15], we introduce a two step random iterative scheme with
errors and prove that the iterative scheme is stable with respect to T with
Lipschitz condition where T is an accretive mapping in arbitrary real Banach
space.

Received June 10, 2015.
2010 Mathematics Subject Classification. 47H06, 47H09, 47H10, 47H40, 60H25, 47J25,

49J40.
Key words and phrases. random iterative schemes, stability, accretive operator, varia-

tional inequality.

c©2016 Korean Mathematical Society

147



148 R. CHUGH, V. KUMAR, AND S. NARWAL

Let X be a real separable Banach space and let J denote the normalized
duality pairing from X to 2X

∗

given by

J(x) = {f ∈ X∗ : 〈x, f〉 = ‖x‖ ‖f‖, ‖f‖ = ‖x‖}, x ∈ X,

where X∗ denote the dual space of X and 〈·, ·〉 denote the generalized duality
pairing between X and X∗.

Suppose (Ω,Σ) denotes a measurable space consisting of a set Ω and sigma
algebra Σ of subsets of Ω and C, a nonempty subset of X . Then random Mann
iterative scheme with errors is defined as follows:

xn+1(w) = (1− αn)xn(w) + αnT (w, xn(w)) + un(w),

for each w ∈ Ω, n ≥ 0,(1.1)

where 0 ≤ αn ≤ 1, x0 : Ω → C, an arbitrary measurable mapping and {un(w)}
is a sequence of measurable mappings from Ω to C.

Also, random Ishikawa iterative scheme with errors is defined as follows:

xn+1(w) = (1− αn)xn(w) + αnT (w, yn(w)) + un(w),

yn(w) = (1− βn)xn(w) + βnT (w, xn(w)) + vn(w),

for each w ∈ Ω, n ≥ 0,(1.2)

where 0 ≤ αn, βn ≤ 1, x0 : Ω → C, an arbitrary measurable mapping and
{un(w)}, {vn(w)} are sequences of measurable mappings from Ω to C.

Obviously {xn(w)} and {yn(w)} are sequences of mappings from Ω into C.
Also, we consider the following two step random iterative scheme with errors

{xn(w)} defined by

xn+1(w) = (1− αn)yn(w) + αnT (w, yn(w)) + un(w),

yn(w) = (1− βn)xn(w) + βnT (w, xn(w)) + vn(w),

for each w ∈ Ω, n ≥ 0,(1.3)

where {un(w)}, {vn(w)} are sequences of measurable mappings from Ω to C,
0 ≤ αn, βn ≤ 1 and x0 : Ω → C, an arbitrary measurable mapping.

Remark 1. Putting βn = 0, vn = 0 in (1.3) and (1.2), we get random Mann
iterative scheme with errors.

Now we give some definitions and lemmas, which will be used in the proof
of our main results.

Definition 1.1. A mapping g : Ω → C is said to be measurable if g−1(B∩C) ∈
Σ for every Borel subset B of X .

Definition 1.2. A function F : Ω×C → C is said to be a random operator if
F (·, x) : Ω → C is measurable for every x ∈ C.

Definition 1.3. A measurable mapping p : Ω → C is said to be random fixed
point of the random operator F : Ω × C → C, if F (w, p(w)) = p(w) for all
w ∈ Ω.
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Definition 1.4. A random operator F : Ω× C → C is said to be continuous
if for fixed w ∈ Ω, F (w, ·) : C → C is continuous.

In the sequel, I denotes the identity operator on X , D(T ) and R(T ) denote
the domain and the range of T , respectively.

Definition 1.5. Let T : Ω×X → X be a mapping. Then

(i) T is said to be Lipschitizian, if for any x, y ∈ X and w ∈ Ω, there exists
L > 0 such that

‖T (w, x)− T (w, y)‖ ≤ L‖x− y‖.(1.4)

(ii) T is said to be nonexpansive, if for any x, y ∈ X and w ∈ Ω,

‖T (w, x)− T (w, y)‖ ≤ ‖x− y‖.(1.5)

(iii) T : Ω × X → X is pseudo-contractive [8] if and only if for all x, y ∈
X,w ∈ Ω and for all r > 0 the following inequality holds:

‖x− y‖ ≤ ‖(1 + r)(x − y)− r(T (w, x) − T (w, y))‖(1.6)

or equivalently if and only if for all x, y ∈ X , there exists j(x − y) ∈
J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2

(iv) T is said to be accretive [8], if and only if for all x, y ∈ X and for all
r > 0 the following inequality holds:

‖x− y‖ ≤ ‖x− y + r(T (w, x) − T (w, y))‖(1.7)

or equivalently if and only if for all x, y ∈ X , there exists j(x − y) ∈
J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≥ 0.

(v) If T is accretive and R(I + λT ) = X for any λ > 0, then T is called
m-accretive [20, 32].

Accretive mappings are connected with nonexpansive mappings. It is well
known that if T is accretive [10], then (I + T )−1 is a nonexpansive single-
valued mapping from R(I + λT ) to D(T ). The interest in accretive mappings
also stems from the following facts:

(a) If T is accretive, then solutions of the equation Tx = 0 correspond to
the equilibrium points of some evolution systems [29].

(b) Many physical problems arising in applied mathematics can be mod-
elled in terms of initial value problem of the form:

dx

dt
= −Tx, x(0) = x0, where T is an accretive mapping.

(c) Their connection with the well-known class of pseudo-contractive map-
pings (T is pseudo-contractive if and only if I − T is accretive).
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Suppose that X is a real reflexive Banach space, T,A : X → X , g : X → X∗

are three mappings, and ϕ : X∗ → R ∪ {∞} is a function with a Gateaux
differential ∂ϕ. Then u is a solution of a variational inequality if for any given
f ∈ X , there exists a u ∈ X such that

g(u) ∈ D(∂ϕ),

〈Tu−Au − f, v − g(u)〉 ≥ ϕ(g(u))− ϕ(v) for all v ∈ X∗.(1.8)

Lemma 1.6 ([4]). Suppose X is a real reflexive Banach space, ∂ϕ◦g : X → 2X

is a mapping, then the following conclusions are equivalent:

(i) x∗ ∈ X is a solution of variational inclusion problem (1.8);
(ii) x∗ ∈ X is a fixed point of the mapping S : X → 2X ;

S(x) = f − (Tx−Ax+ ∂ϕ(g(x))) + x;

(iii) x∗ ∈ X is a solution of the equation f = Tx−Ax+ ∂ϕ(g(x)).

Lemma 1.7 ([20]). Suppose X is an arbitrary real Banach space, T : D(T ) ⊂
X → X is accretive and continuous, and D(T ) = X. Then T is m-accretive.

Lemma 1.8 ([32]). Suppose X is an arbitrary real Banach space, T : D(T ) ⊂
X → X is an m-accretive mapping. Then the equation x + Tx = f has a

unique solution in D(T ) for any f ∈ X.

Lemma 1.9. Let xn(w) be a sequence of real numbers satisfying the following

inequality:

xn+1 ≤ δxn + σn, n ≥ 1,

where xn ≥ 0, σn ≥ 0 and lim
n→∞

σn = 0, 0 ≤ δ < 1. Then xn → 0 as n → ∞.

Definition 1.10 ([1]). Let T : Ω× C → C be a random operator, where C is
a nonempty closed convex subset of a real separable Banach space X . Let x0 :
Ω → C be any measurable mapping. The sequence {xn+1(w)} of measurable
mappings from Ω to C, for n = 0, 1, 2, . . . generated by the certain random
iterative scheme involving a random operator T is denoted by {T, xn(w)} for
each w ∈ Ω. Suppose that xn(w) → p(w) as n → ∞ for each w ∈ Ω, where
p ∈ RF (T ). Let {pn(w)} be any arbitrary sequence of measurable mappings
from Ω to C. Define the sequence of measurable mappings kn : Ω → R by
kn(w) = d(pn(w), {T, pn(w)}). If for each w ∈ Ω, kn(w) → 0 as n → ∞ implies
pn(w) → p(w) as n → ∞ for each w ∈ Ω, then the random iterative scheme is
said to be stable with respect to the random operator T .

2. Convergence and stability results

In this section, we establish the convergence and stability results of revised
two step random iterative scheme with errors (1.3) and random Ishikawa iter-
ative scheme with errors in real Banach spaces.
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Theorem 2.1. Let X be a real Banach space, T : Ω×X → X be a Lipschitzian

random mapping with a Lipschitz constant L ≥ 1, such that (−T ) is accretive.

Let {xn(w)} be the random iterative scheme with errors defined by (1.3),with
the following restrictions:

(i) 0 < α < αn − L2(1 + L)α2
n
− βn(L − 1) < 1 (n ≥ 0).

(ii) lim
n→∞

un(w) = 0, lim
n→∞

vn(w) = 0.

Then

(I) the sequence {xn(w)} converges strongly to a unique fixed point p(w)
of T .

(II) the sequence {xn(w)} is stable. Moreover, lim
n→∞

pn(w) = p(w) implies

lim
n→∞

kn(w) = 0.

Proof. (I) From (1.3), we have

(xn+1(w) − p(w)) − αn(T (w, xn+1(w)) − T (w, p(w)))

= (1 − αn)(yn(w) − p(w))−αn(T (w, xn+1(w)) − T (w, yn(w)) + un(w).(2.1)

Since (−T ) is accretive and Lipschitzian mapping, so using (2.1) and (1.7), we
get

‖xn+1(w)− p(w)‖

≤ ‖xn+1(w)− p(w) − αn(T (w, xn+1(w)) − T (w, p(w)))‖

= ‖(1−αn)(yn(w)−p(w))−αn(T (w, xn+1(w))−T (w, yn(w)))+un(w)‖

≤(1−αn)‖yn(w)−p(w)‖+αn‖T (w, yn(w))−T (w, xn+1(w))‖+‖un(w)‖.(2.2)

Now, using Lipschitz condition on T , (1.3) implies

‖(T (w, xn+1(w)) − T (w, yn(w)))‖

≤ L‖xn+1(w)− yn(w)‖

≤ Lαn‖yn(w) − T (w, yn(w))‖ + L‖un(w)‖

≤ Lαn‖yn(w) − p(w)‖ + Lαn‖T (w, yn(w)) − p(w)‖ + L‖un(w)‖

= Lαn(1 + L)‖yn(w) − p(w)‖ + L‖un(w)‖.(2.3)

Also, from (1.3), we have the following estimate:

‖yn(w) − p(w)‖

≤ (1− βn)‖xn(w) − p(w)‖ + βn‖T (w, xn(w)) − p(w)‖ + ‖vn(w)‖

≤ (1− βn)‖xn(w) − p(w)‖ + βnL‖xn(w) − p(w)‖ + ‖vn(w)‖

= [1 + βn(L− 1)]‖xn(w) − p(w)‖ + ‖vn(w)‖.(2.4)

Using inequalities (2.2)-(2.4), we arrive at

‖xn+1(w) − p(w)‖

≤ (1− αn)[1 + βn(L− 1)]‖xn(w) − p(w)‖ + (1− αn)‖vn(w)‖
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+ α2
nL(1 + L)[1 + βn(L − 1)]‖xn(w)− p(w)‖ + (1 + αnL)‖un(w)‖

+ α2
nL(1 + L)‖vn(w)‖

≤ [1 + βn(L− 1)][1−αn+α2
nL(1+L)]‖xn(w)−p(w)‖ + (1+L)‖un(w)‖

+ [1 + L(1 + L)]‖vn(w)‖

≤ [1−{αn−α2
n
L2(1+L)−βn(L−1)}]‖xn(w)−p(w)‖+(1+L)‖un(w)‖

+ [1 + L(1 + L)]‖vn(w)‖

≤ [1− α]‖xn(w)− p(w)‖ + (1 + L)‖un(w)‖ + [1 + L(1 + L)]‖vn(w)‖.(2.5)

Now, put [1− α] = δ and [1 + L(1 + L)]‖vn(w)‖ + (1 + L)‖un(w)‖ = σn.
Then (2.5) reduces to

‖xn+1(w) − p(w)‖ ≤ δ‖xn(w) − p(w)‖ + σn.

Therefore, using conditions (i)-(ii) and Lemma 1.9, above inequality yields
lim
n→∞

‖xn+1(w)−p(w)‖ = 0, that is {xn(w)} defined by (1.3) converges strongly

to a random fixed point p(w) of T .
(II) Suppose that {pn(w)} ⊂ X , is an arbitrary sequence,

kn(w) = ‖pn+1(w) − (1− αn)qn(w)− αnT (w, qn(w)) − un(w)‖,

where

qn(w) = (1− βn)pn(w) + βnT (w, pn(w)) + vn(w) and lim
n→∞

kn(w) = 0.

Then

‖pn+1(w)− T (w, p(w))‖

= ‖pn+1(w)− (1− αn)qn(w) − αnT (w, qn(w))− un(w)‖

+ ‖(1− αn)qn(w) + αnT (w, qn(w)) + un(w) − T (w, p(w))‖

= kn(w) + ‖rn − T (w, p(w))‖,(2.6)

where

rn = (1 − αn)qn(w) + αnT (w, qn(w)) + un(w).(2.7)

Then using (2.7), we have

(rn(w) − p(w)) − αn(T (w, rn)− T (w, p(w)))

= (1− αn)(qn(w)− p(w)) − αn(T (w, rn(w)) − T (w, qn(w))) + un(w)

which further implies

‖rn(w) − p(w)‖

≤ ‖rn(w) − p(w)− αn(T (w, rn(w)) − T (w, p(w)))‖

= ‖(1−αn)(qn(w)−p(w))−αn(T (w, rn(w))−T (w, qn(w)))+un(w)‖

≤ (1−αn)‖(qn(w)−p(w))‖+αn‖(T (w, rn(w))−T (w, qn(w)))‖+‖un(w)‖.(2.8)
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Now, similar to (2.3) and (2.4), we have the following estimates:

‖(T (w, rn(w)) − T (w, qn(w)))‖ ≤ Lαn(1 + L)‖qn(w) − p(w)‖ + L‖un(w)‖,

(2.9)

‖qn(w)− p(w)‖ ≤ [1 + βn(L− 1)]‖(pn(w) − p(w))‖ + ‖vn(w)‖.

(2.10)

Using estimates (2.8)-(2.10), we arrive at

‖rn(w)− p(w)‖

≤ [1− {αn − α2
n
L2(1 + L)− βn(L − 1)}]‖(pn(w) − p(w))‖

+ (1 + L)‖un(w)‖ + [1 + L(1 + L)]‖vn(w)‖.(2.11)

Substituting (2.11) in (2.6), we obtain

‖pn+1(w)− T (w, p(w))‖

≤ kn(w) + [1− {αn − α2
n
L2(1 + L)− βn(L − 1)}]‖(pn(w)− p(w))‖

+ (1 + L)‖un(w)‖ + [1 + L(1 + L)]‖vn(w)‖.(2.12)

Hence again using Lemma 1.9, together with conditions (i)-(ii), (2.12) yields
lim
n→∞

pn(w) = p(w).

Therefore, the iteration (1.3) is T -stable.
Further, let lim

n→∞
pn(w) = p(w), then using (2.11), we have

kn(w)

= ‖pn+1(w) − (1− αn)qn(w) − αnT (w, qn(w)) − un(w)‖

= ‖pn+1(w) − rn(w)‖

≤ ‖pn(w) − p(w)‖ + ‖rn(w) − p(w)‖

≤ ‖pn(w) − p(w)‖ + [1− {αn − α2
nL

2(1 + L)− βn(L− 1)}]‖(pn(w) − p(w))‖

+ (1 + L)‖un(w)‖ + [1 + L(1 + L)]‖vn(w)‖,

which implies lim
n→∞

kn(w) = 0. This completes the proof of Theorem 2.1. �

Putting βn = 0, in Theorem 2.1, we have the following obvious corollary:

Corollary 2.2. Let X be a real Banach space, T : Ω×X → X be a Lipschitzian

random mapping with a Lipschitz constant L ≥ 1, such that (−T ) is accretive.

Let {xn(w)} be the random Mann iterative scheme with errors defined by (1.1)
with the following conditions:

(i) 0 < α < αn − L2(1 + L)α2
n
< 1 (n ≥ 0).

(ii) lim
n→∞

un(w) = 0.

Then

(I) the sequence {xn(w)} converges strongly to a unique fixed point p(w)
of T .
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(II) the sequence {xn(w)} is stable. Moreover, lim
n→∞

pn(w) = p(w) implies

lim
n→∞

kn(w) = 0.

Theorem 2.3. Let X be a real Banach space, T : Ω×X → X be Lipschitzian

random mapping with a Lipschitz constant L ≥ 1, such that (−T ) is accretive.

Let {xn(w)} be the random Ishikawa iterative scheme with errors defined by

(1.2) with the following restrictions:

(i) 0 < α < αn − αnL(1 + L)(αn + βn)− L(L2 − 1)αnβn < 1 (n ≥ 0).
(ii) lim

n→∞
un(w) = 0, lim

n→∞
vn(w) = 0.

Then

(I) the sequence {xn(w)} converges strongly to a unique fixed point p(w)
of T .

(II) the sequence {xn(w)} is stable. Moreover, lim
n→∞

pn(w) = p(w) implies

lim
n→∞

kn(w) = 0.

Proof. Using (1.2), we have

(xn+1(w) − p(w))− αn(T (w, xn+1)− T (w, p(w)))

= (1−αn)(xn(w)−p(w))−αn(T (w, xn+1(w))−T (w, yn(w)))+un(w).(2.13)

Using (2.13) and (1.7), we get

‖xn+1(w)−p(w)‖

≤ ‖xn+1(w)−p(w)−αn(T (w, xn+1(w))−T (w, p(w)))‖

= ‖(1−αn)(xn(w)−p(w))−αn(T (w, xn+1(w))−T (w, yn(w)))+un(w)‖

≤ (1−αn)‖xn(w)−p(w)‖+αn‖T (w, xn+1(w))−T (w, yn(w))‖+‖un(w)‖.(2.14)

As T is a Lipschitz mapping with constant L, so we have the following estimates:

‖T (w, xn+1(w)) − T (w, yn(w))‖

≤ L‖xn+1(w) − yn(w)‖

≤ L[(1−αn)‖xn(w)−yn(w)‖+αn‖T (w, yn(w))−yn(w)‖+‖un(w)‖],(2.15)

‖T (w, (yn(w))) − yn(w)‖

≤ (1 + L)‖yn(w) − p(w)‖

≤ (1 + L)[(1− βn)‖xn(w) − p(w)‖ + βn‖T (w, (xn(w))) − xn(w)‖

+ ‖vn(w)‖]

≤ (1 + L)[1 + (L− 1)βn]‖xn(w) − p(w)‖ + (1 + L)‖vn(w)‖(2.16)

and

‖xn(w) − yn(w)‖ ≤ βn‖xn(w) − T (w, (xn(w)))‖ + ‖vn(w)‖

≤ (1 + L)βn‖xn(w)− p(w)‖ + ‖vn(w)‖.(2.17)
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Using (2.16) and (2.17), (2.15) yields

‖(T (w, xn+1(w)) − T (w, yn(w)))‖

≤ {L(1 + L)(1− αn)βn + L(1 + L)[1 + (L− 1)βn]αn} ‖xn(w) − p(w)‖

+ L(1 + Lαn)‖vn(w)‖ + L‖un(w)‖

≤ [L(1 + L)(αn + βn) + L(L2 − 1)αnβn]‖xn(w) − p(w)‖

+ L(1 + L)‖vn(w)‖ + L‖un(w)‖.(2.18)

Substituting (2.18) into (2.14), we arrive at

‖xn+1(w) − p(w)‖

≤ [1−{αn−αnL(1+L)(αn+βn)−L(L2−1)αnβn}]‖(xn(w)−p(w))‖

+ L(1 + L)αn‖vn(w)‖ + (1 + Lαn)‖un(w)‖

≤ [1−{αn−αnL(1+L)(αn+βn)−L(L2 − 1)αnβn}]‖(xn(w)−p(w))‖

+ L(1 + L)‖vn(w)‖ + (1+L)‖un(w)‖

≤ [1− α]‖(xn(w) − p(w))‖ + L(1 + L)‖vn(w)‖ + (1 + L)‖un(w)‖.(2.19)

Now, put [1− α] = δ and L(1 + L)‖vn(w)‖ + (1 + L)‖un(w)‖ = σn.
Then (2.19) reduces to

‖xn+1(w) − p(w)‖ ≤ δ‖xn(w) − p(w)‖ + σn.

Therefore, using conditions (i)-(ii) and Lemma 1.9, above inequality yields
lim
n→∞

‖xn+1(w)−p(w)‖ = 0, that is {xn(w)} defined by (1.2) converges strongly

to a random fixed point p(w) of T .
(II) The proof of this part can hold on the same lines as in the proof of

part (II) in Theorem 2.1. �

Now, we demonstrate the following example to prove the validity of our
results.

Example 2.4. Let Ω = [0, 2] and Σ be the sigma algebra of Lebesgue’s mea-
surable subsets of Ω. Take X = R and define random operator T from Ω×X

to X as T (w, x) = w − x. Then the measurable mapping ξ : Ω → X defined
by ξ(w) = w

2
, for every w ∈ Ω, serve as a random fixed point of T . It is

easy to see that the operator T is a Lipschitz random operator with Lipschitz
constant L = 1 such that (−T ) is accretive and αn = 1

(1+L)3
, βn = 1

(1+L)6
,

‖un‖ = ‖vn‖ = 1

(n+1)
satisfies all the conditions (i)-(ii) given in Theorem 2.1.

and Theorem 2.3.

Remark 2.5. New random iterative scheme is more acceptable as compared to
random Ishikawa iterative scheme with errors due to following reasons:

(1) In deterministic case, for accretive mappings new two step iterative
with errors has better convergence rate as compared to Ishikawa itera-
tive scheme with errors.
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(2) For convergence, weak control conditions on parameters are required
in new two step random iterative with errors as compared to random
Ishikawa iterative scheme with errors.

Proof. (1) Let T (x) = 1− x, L = 1, αn = 1

(1+L)3
, βn = 1

(1+L)6
, ‖un‖ = ‖vn‖ =

1

(n+1)
. Then taking initial approximation x0 = 1, convergence of new two step

and Ishikawa iterative schemes with errors to the fixed point 0.5 of operator
T is shown in the following table. From table, it is obvious that new two step
iterative scheme with errors has much better convergence rate as compared to
Ishikawa iterative scheme with errors.

Number of New two step iterative Ishikawa iterative scheme
iterations scheme with errors with errors

N Txn xn+1 Txn xn+1

0 0 2.83203 0 1.9707
1 −1.83203 2.19437 −0.970703 1.93049
2 −1.19437 1.73106 −0.930489 1.89137
3 −0.731063 1.39444 −0.891374 1.85333
4 −0.394444 1.14987 −0.853328 1.81632
5 −0.14987 0.972171 −0.816323 1.78033
6 0.0278291 0.843062 −0.78033 1.74532
7 0.156938 0.749256 −0.745321 1.71127
8 0.250744 0.6811 −0.711269 1.67815
9 0.3189 0.63158 −0.678149 1.64593
10 0.36842 0.595601 0 1.9707
...

...
...

...
...

40 0.499991 0.500007 0.00118339 0.985177
41 0.499993 0.500005 0.0148229 0.971911
42 0.499995 0.500003 0.0280895 0.959007
43 0.499997 0.500003 0.0409933 0.946456
44 0.499997 0.500002 0.0535442 0.934248
45 0.499998 0.500001 0.065752 0.922374
46 0.499999 0.500001 0.077626 0.910825
47 0.499999 0.500001 0.0891753 0.899591
48 0.499999 0.500001 0.100409 0.888665
49 0.499999 0.5 0.111335 0.878037
50 0.5 0.5 0.121963 0.8677
...

...
...

...
...

528 0.5 0.5 0.499999 0.500001
529 0.5 0.5 0.499999 0.500001
530 0.5 0.5 0.499999 0.500001
531 0.5 0.5 0.499999 0.500001
532 0.5 0.5 0.499999 0.500001
533 0.5 0.5 0.499999 0.500001
534 0.5 0.5 0.499999 0.500001
535 0.5 0.5 0.499999 0.500001
536 0.5 0.5 0.499999 0.500001
537 0.5 0.5 0.499999 0.500001
538 0.5 0.5 0.499999 0.5
539 0.5 0.5 0.5 0.5
...

...
...

...
...

(2) If we take L = 1, αn = 1

4L(1+L)+L
, βn = 1

4L(1+L)
, then both conditions

0 < αn − L2(1 + L)α2
n
− βn(L − 1) < 1 and 0 < αn − αnL(1 + L)(αn + βn)−

L(L2 − 1)αnβn < 1, are satisfied.
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But if we take L = 1, αn = 1

(1+L)3
and βn = 1

(1+L)
, then 0 < αn − L2(1 +

L)α2
n − βn(L− 1) < 1 is satisfied but 0 < αn −αnL(1 +L)(αn + βn)−L(L2 −

1)αnβn < 1, is not satisfied.
So,

0 < αn − αnL(1 + L)(αn + βn)− L(L2 − 1)αnβn < 1,

is stronger condition than

0 < αn − L2(1 + L)α2
n
− βn(L− 1) < 1 .

3. Applications

In this section, we apply the random iterative schemes with errors to find
solution of nonlinear random variational inclusion problem.

Theorem 3.1. Let T,A : Ω × X → X, g : Ω × X → X∗ are three random

operators on real reflexive Banach space X and ϕ : X∗ → R∪ {∞}, a function

with continuous Gateaux differential ∂ϕ, such that T−A+∂ϕ◦g−I : Ω×X → X

is a Lipschitzian accretive random operator with a Lipschitz constant L ≥ 1.
Define a random operator S : Ω×X → X by S(w, x) = f−(T (w, x)−A(w, x)+
∂ϕ(g(w, x)))+x(w), where f ∈ X is any given point. For any given x0(w) ∈ X,

let {xn(w)} be the random iterative scheme with errors defined by

xn+1(w) = (1− αn)yn(w) + αnS(w, yn(w)) + un(w),

yn(w) = (1− βn)xn(w) + βnS(w, xn(w)) + vn(w),

for each w ∈ Ω, n ≥ 0,(3.1)

where {un(w)}, {vn(w)} are measurable sequences in X and {αn}, {βn} are

sequences in [0, 1] satisfying the following conditions:

(i) 0 < α < αn − L∗2(1 + L∗)α2
n
− βn(L

∗ − 1) < 1, L∗ = 1 + L.

(ii) lim
n→∞

un(w) = 0, lim
n→∞

vn(w) = 0.

Then the iterative scheme (3.1) converges to the unique solution x∗(w) ∈ X of

the following nonlinear variational inclusion problem

g(w, u) ∈ D(∂ϕ),

〈T (w, u)−A(w, u) − f, v − g(w, u)〉 ≥ ϕ(g(w, u))− ϕ(v),

for all v ∈ X∗.(3.2)

Proof. We shall complete the proof in two steps. In the first step, we show that
nonlinear variational inclusion problem (3.2) has a unique solution x∗ ∈ X . In
the second step, we show that iterative scheme (3.1) converges to the unique
solution.

Step 1. As T − A + ∂ϕ ◦ g − I is a Lipschitzian accretive mapping, so by
Lemma 1.7, T − A + ∂ϕ ◦ g − I is m-accretive. Hence by Lemma 1.8, for any
f ∈ X , the equation

f = T (w, x)−A(w, x) + ∂ϕ(g(w, x)) − I(w, x) + x(w)
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has a unique solution x∗(w) ∈ X . Then, using Lemma 1.6, x∗(w) ∈ X will
be the solution of nonlinear variational inclusion problem (3.2) and it is fixed
point of S.

Step 2. Now since T −A+ ∂ϕ ◦ g − I : Ω×X → X is a Lipschitzian accretive
operator with a Lipschitz constant L ≥ 1, so S : Ω × X → X is also a Lip-
schitzian mapping with Lipschitz constant L∗ = 1 + L, such that (−S) is an
accretive operator. Now, replacing T by S in (1.3), L by L∗ in condition (i) of
Theorem 2.1 and following the same steps as in the proof of Theorem 2.1, it
is easy to see that the random iterative scheme (3.1) converges to the unique
solution x∗ ∈ X of nonlinear variational inclusion problem (3.2). �

Letting ϕ ≡ 0, un(w) = vn(w) = 0, in Theorem 3.1, we can obtain the
following theorem.

Theorem 3.2. Let T,A : Ω × X → X, g : Ω × X → X∗ are three random

operators on real reflexive Banach space X, such that T −A− I : Ω×X → X

is a Lipschitzian accretive operator with a Lipschitz constant L ≥ 1. Define a

random operator S : Ω×X → X by S(w, x) = f − (T (w, x)−A(w, x)) + x(w),
where f ∈ X is any given point. For any given x0(w) ∈ X, let {xn(w)} be the

random iterative scheme defined by

xn+1(w) = (1− αn)yn(w) + αnS(w, yn(w)),

yn(w) = (1 − βn)xn(w) + βnS(w, xn(w)) for each w ∈ Ω, n ≥ 0,(3.3)

where {αn}, {βn} are sequences in [0, 1] satisfying the following conditions:
(i) 0 < α < αn − L∗2(1 + L∗)α2

n − βn(L
∗ − 1) < 1,

Then the iterative scheme (3.3) converges to the unique solution x∗ ∈ X of

nonlinear variational inequality

〈T (w, u)−A(w, u) − f, v − g(w, u)〉 ≥ 0 for all v ∈ X∗.

Theorem 3.3. Let T,A : Ω × X → X, g : Ω × X → X∗ are three random

operators on real reflexive Banach space X and ϕ : X∗ → R∪ {∞}, a function

with continuous Gateaux differential ∂ϕ, such that T−A+∂ϕ◦g−I : Ω×X → X

is a Lipschitzian accretive operator with a Lipschitz constant L ≥ 1. Define

an random operator S : Ω × X → X by S(w, x) = f − (T (w, x) − A(w, x) +
∂ϕ(g(w, x)))+x(w), where f ∈ X is any given point. For any given x0(w) ∈ X,

let {xn(w)} be the random Ishikawa iterative scheme with errors defined by

xn+1(w) = (1− αn)xn(w) + αnS(w, yn(w)) + un(w),

yn(w) = (1− βn)xn(w) + βnS(w, xn(w)) + vn(w),

for each w ∈ Ω, n ≥ 0,(3.4)

where {un(w)}, {vn(w)} are measurable sequences in X and {αn}, {βn} are

sequences in [0, 1], satisfying the following conditions:

(i) 0 < α < αn − αnL
∗(1 + L∗)(αn + βn)− L∗(L2 − 1)αnβn < 1.

(ii) lim
n→∞

un(w) = 0, lim
n→∞

vn(w) = 0.
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Then the iterative scheme (3.4) converges to the unique solution x∗ ∈ X of

nonlinear variational inclusion problem (3.2).

Proof. Using Theorem 2.3 and following the same arguments as in the proof
of Theorem 3.1, it is easy to show the random Ishikawa iterative scheme with
errors (3.4) converges to the unique solution x∗ ∈ X of nonlinear variational
inclusion problem (3.2). �

Theorem 3.4. Let T,A : Ω × X → X, g : Ω × X → X∗ are three random

operators on real reflexive Banach space X and ϕ : X∗ → R∪ {∞}, a function

with continuous Gateaux differential ∂ϕ, such that T−A+∂ϕ◦g−I : Ω×X → X

is a Lipschitzian accretive operator with a Lipschitz constant L ≥ 1. Define

a random operator S : Ω × X → X by S(w, x) = f − (T (w, x) − A(w, x) +
∂ϕ(g(w, x)))+x(w), where f ∈ X is any given point. For any given x0(w) ∈ X,

let {xn(w)} be the random Mann iterative scheme with errors defined by

xn+1(w) = (1− αn)xn(w) + αnS(w, xn(w)) + un(w),

for each w ∈ Ω, n ≥ 0,(3.5)

where {un(w)} is a measurable sequence in X and {αn} is a sequence in [0, 1]
satisfying following conditions:

(i) 0 < α < αn − L2(1 + L)α2
n < 1.

(ii) lim
n→∞

un(w) = 0.

Then the iterative scheme (3.5) converges to the unique solution x∗ ∈ X of

nonlinear variational inclusion problem (3.2).

Remark 3.5. Results involving random Ishikawa and Mann iterative schemes to
solve variational inclusion problem (3.2) or variational inequality can be proved
as special cases of Theorems 3.1-3.4.

Remark 3.6. Our results are generalization, improvement and extension of some
of the well known results in the following sense:

1. Theorems 3.1 and 3.3 are randomization of Theorem 3.1 of Chang [4]
as well as Theorem 2.1 of Zhang [31], using new convergence technique
and weak restrictive condition on parameters. In fact in Theorems 3.1
and 3.3, αn and βn need not converge to zero as in Theorem 3.1 of
Chang [4] and Theorem 2.1 of Zhang [31].

2. Theorem 3.3 holds in reflexive real Banach spaces, whereas Theorem 3.1
of Chang [4] has been proved in uniformly smooth Banach spaces.

3. In Theorems 3.1 and 3.3, unlike in Theorem 3.1 of Chang [4] and The-
orem 2.1 of Zhang [31],the boundedness of range of S or Sxn and Syn,
is not required.

4. The Ishikawa iterative scheme has been replaced with more general
random Ishikawa iterative scheme with errors and more acceptable new
two step random iterative scheme with errors.
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5. Stability of more acceptable new two step random iterative scheme with
errors has been proved in Theorem 2.1.

6. Theorem 3.1 of Chang [4], generalizes and improves the results in [16,
17, 18, 21, 27, 28, 30], so Theorems 3.1 and 3.3 extend and establish
random generalization of the work of [16, 17, 18, 21, 27, 28, 30].
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