DOI QR코드

DOI QR Code

Effect of Unpolished Rice Vinegar Containing Monascus-Fermented Soybean on Inhibitory Activities of Tyrosinase and Elastase

홍국발효 콩 함유 현미 식초의 Tyrosinase와 Elastase의 저해작용에 미치는 영향

  • Hwang, Ji-Young (Department of Food and Nutrition, Sungshin Women's University) ;
  • Cho, Ho-Youn (Department of Food and Nutrition, Sungshin Women's University) ;
  • Pyo, Young-Hee (Department of Food and Nutrition, Sungshin Women's University)
  • 황지영 (성신여자대학교 식품영양학과) ;
  • 조호연 (성신여자대학교 식품영양학과) ;
  • 표영희 (성신여자대학교 식품영양학과)
  • Received : 2015.11.16
  • Accepted : 2015.12.22
  • Published : 2016.01.31

Abstract

Cosmeceutical potentials of unpolished rice vinegars containing different amounts of Monascus-fermented soybean powder (soy-koji) were investigated. Four different vinegar types were prepared using 0, 10, 30, and 50% soy-koji addition. Soy-koji vinegar showed stronger cosmeceutical properties, in terms of tyrosinase and elastase inhibitory activities as well as antioxidant capacities, than unpolished rice vinegars (P<0.05). Bioactive effects of soy koji vinegar increased with increasing concentrations of total phenolics and isoflavone aglycones (P<0.05). Results indicate that unpolished rice vinegar supplemented with soy-koji can be an efficient strategy to improve bioactivities in vinegar with associated enhancement of cosmeceutical functionality.

현미와 홍국발효 콩 시료의 첨가량을 달리하여 제조한 식초의 미용건강기능성 소재(cosmeceuticals)로의 활용 가능성을 평가한 결과는 다음과 같다. DPPH와 ABTS 라디칼 소거능으로 측정한 항산화 활성은 현미 식초에 비해 홍국발효 콩이 첨가된 시료가 첨가량에 비례하여 최대 7배 이상 증가하였다(P<0.05). 특히 tyrosinase 저해 활성은 50% 첨가량의 시료에서 kojic acid의 저해 활성과 유사하게 나타나 미백 소재로서의 가능성을 보였으며, elastase 저해 활성 역시 첨가량에 비례하여 유의적으로 증가하였다(P<0.05). 현미 식초에 비해 홍국발효 콩을 1:1(w/w)의 비율로 첨가한 식초의 높은 생리활성은 시료에 함유된 총 페놀 함량, 특히 이소플라본 비배당체형의 genistein과 daidzein의 농도와 높은 상관관계가 성립되었다.

Keywords

References

  1. Preetha JP, Karthika K. 2009. Cosmeceuticals-An evolution. Int J ChemTech Res 1: 1217-1223.
  2. Royer M, Prado M, Garcia-Perez ME, Diouf PN, Stevanovic T. 2013. Study of nutraceutical, nutricosmetics and cosmeceutical potentials of polyphenolic bark extracts from Canadian forest species. PharmaNutrition 1: 158-167. https://doi.org/10.1016/j.phanu.2013.05.001
  3. Kohl E, Steinbauer J, Landthaler M, Szeimies RM. 2011. Skin ageing. J Eur Acad Dermatol Venereol 25: 873-884. https://doi.org/10.1111/j.1468-3083.2010.03963.x
  4. Cabanes J, Chazarra S, Garcia-Carmona F. 1994. Kojic acid, a cosmetic skin whitening agent, is a slow-binding inhibitor of catecholase activity of tyrosinase. J Pharm Pharmacol 46: 982-985. https://doi.org/10.1111/j.2042-7158.1994.tb03253.x
  5. Kraunsoe JA, Claridge TD, Lowe G. 1996. Inhibition of human leukocyte and porcine pancreatic elastase by homologues of bovine pancreatic trypsin inhibitor. Biochemistry 35: 9090-9096. https://doi.org/10.1021/bi953013b
  6. Zhao R, Bruning E, Rossetti D, Starcher B, Seiberg M, Iotsova-Stone V. 2009. Extracts from Glycine max (soybean) induce elastin synthesis and inhibit elastase activity. Exp Dermatol 18: 883-886. https://doi.org/10.1111/j.1600-0625.2009.00862.x
  7. Jung EY, Hong YH, Kim SH, Suh HJ. 2010. Physiological effects of formulations added with black garlic extract on skin care: oxidative stress, tyrosinase and elastase activities. J Korean Soc Food Sci Nutr 39: 662-668. https://doi.org/10.3746/jkfn.2010.39.5.662
  8. Kajimoto O, Ohshima Y, Tayama K, Hirata H, Nishimura A, Tsukamoto Y. 2003. Hypotensive effects of drinks containing vinegar on high normal blood pressure and mild hypertensive subjects. J Nutr Food 6: 51-68.
  9. Nakamura K, Ogasawara Y, Endou K, Fujimori S, Koyama M, Akano H. 2010. Phenolic compounds responsible for the superoxide dismutase-like activity in high-Brix apple vinegar. J Agric Food Chem 58: 10124-10132. https://doi.org/10.1021/jf100054n
  10. Chou CH, Liu CW, Yang DJ, Wu YH, Chen YC. 2015. Amino acid, mineral, and polyphenolic profiles of vinegar, and its lipid lowering and antioxidant effects in vivo. Food Chem 168: 63-69. https://doi.org/10.1016/j.foodchem.2014.07.035
  11. Journoud M, Jones PJ. 2004. Red yeast rice: a new hypolipidemic drug. Life Sci 74: 2675-2683. https://doi.org/10.1016/j.lfs.2003.10.018
  12. Hong MY, Seeram NP, Zhang Y, Heber D. 2008. Anticancer effects of Chinese red yeast rice versus monacolin K alone on colon cancer cells. J Nutr Biochem 19: 448-458. https://doi.org/10.1016/j.jnutbio.2007.05.012
  13. Pyo YH, Lee TC. 2007. The potential antioxidant capacity and angiotensin I-converting enzyme inhibitory activity of Monascus-fermented soybean extracts: evaluation of Monascus-fermented soybean extracts as multifunctional food additives. J Food Sci 72: S218-S223. https://doi.org/10.1111/j.1750-3841.2007.00312.x
  14. Pyo YH, Seong KS. 2013. Effects of Monascus-fermented grain extracts on plasma antioxidant status and tissue levels of ubiquinones and $\alpha$-tocopherol in hyperlipidemic rats. Food Chem 141: 428-435. https://doi.org/10.1016/j.foodchem.2013.02.110
  15. Pyo YH. 2007. Production of a high value-added soybean containing bioactive mevinolins and isoflavones. J Food Sci Nutr 12: 29-34. https://doi.org/10.3746/jfn.2007.12.1.029
  16. Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16: 144-158.
  17. Hsieh HC, Kao TH, Chen BH. 2004. A fast HPLC method for analysis of isoflavones in soybean. J Liq Chromatogr Relat Technol 27: 315-324. https://doi.org/10.1081/JLC-120027102
  18. Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28: 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  19. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evan C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  20. Andlauer W, Stumpf C, Furst P. 2000. Influence of the acetification process on phenolic compounds. J Agric Food Chem 48: 3533-3536. https://doi.org/10.1021/jf000010j
  21. Hsieh CW, Lu YR, Lin SM, Lai TY, Chiou RY. 2013. Stability of monacolin K and citrinin and biochemical characterization of red-koji vinegar during fermentation. J Agric Food Chem 61: 7276-7283. https://doi.org/10.1021/jf401542q
  22. Kim JS, Kim JG, Kim WJ. 2004. Changes of isoflavone contents in soybean cultivars pickled in persimmon vinegar. Korean J Food Sci Technol 36: 833-836.
  23. Chen JC, Wang J, Wang ZJ, Li YJ, Pang J, Lin HT, Yin SW. 2015. Effect of Monascus aged vinegar on isoflavone conversion in soy germ by soaking treatment. Food Chem 186: 256-264. https://doi.org/10.1016/j.foodchem.2015.02.099
  24. Izumi T, Piskula MK, Osawa S, Obata A, Tobe K, Saito M, Kataoka S, Kubota Y, Kikuchi M. 2000. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J Nutr 130: 1695-1699. https://doi.org/10.1093/jn/130.7.1695
  25. Paine C, Sharlow E, Liebel F, Eisinger M, Shapiro S, Seiberg M. 2001. An alternative approach to depigmentation by soybean extracts via inhibition of the PAR-2 pathway. J Invest Dermatol 116: 587-595. https://doi.org/10.1046/j.1523-1747.2001.01291.x
  26. Huang ZR, Hung CF, Lin YK, Fang JY. 2008. In vitro and in vivo evaluation of topical delivery and potential dermal use of soy isoflavones genistein and daidzein. Int J Pharm 364: 36-44. https://doi.org/10.1016/j.ijpharm.2008.08.002
  27. Leyden J, Wallo W. 2011. The mechanism of action and clinical benefits of soy for the treatment of hyperpigmentation. Int J Dermatol 50: 470-477. https://doi.org/10.1111/j.1365-4632.2010.04765.x
  28. Werb Z, Banda MJ, McKerrow JH, Sandhaus RA. 1982. Elastases and elastin degradation. J Invest Dermatol 79: 154s-159s. https://doi.org/10.1038/jid.1982.28

Cited by

  1. 전통 식초의 종류와 제조방법에 관한 문헌 연구 vol.49, pp.4, 2016, https://doi.org/10.23093/fsi.2016.49.4.94
  2. 레몬그라스 식초의 초산발효 특성과 항산화 활성 vol.24, pp.5, 2017, https://doi.org/10.11002/kjfp.2017.24.5.680
  3. 천도복숭아 식초의 이화학적 특성과 항산화 및 알코올 대사 효소 활성 vol.28, pp.10, 2018, https://doi.org/10.5352/jls.2018.28.10.1193
  4. Antioxidant and anti-inflammatory activity on sea tangle (Laminaria japonica) adding vinegar vol.26, pp.2, 2016, https://doi.org/10.11002/kjfp.2019.26.2.211
  5. Correlation between antioxidant activity and anti-wrinkle effect of ethanol extracts of Sanguisorba Officinalis L. vol.41, pp.suppl2, 2016, https://doi.org/10.1590/fst.10921
  6. 홍국발효 대두의 항산화 및 항당뇨 활성 vol.34, pp.2, 2021, https://doi.org/10.9799/ksfan.2021.34.2.187
  7. The In Vitro Anti-Diabetic and Anti-Obesity Effect of Monascus-Fermented Grain Vinegar vol.50, pp.8, 2021, https://doi.org/10.3746/jkfn.2021.50.8.783