DOI QR코드

DOI QR Code

Detailed Analysis of Vertical Connector in Modular Roadway Slab Under Temperature and Lifting Loading

온도하중과 인양하중에 영향을 받는 모듈러 도로 슬래브 수직연결부의 상세해석

  • Kim, WooSeok (Dept. of Civil Engineering, Chungnam National University) ;
  • Nam, Jeonghee (Korea Institute of Civil Engineering and Building Technology) ;
  • Min, Geunhyeong (Dept. of Civil Engineering, Chungnam National University) ;
  • Kim, Kyeongjin (Dept. of Civil and Environmental Engineering, Korea Maritime and Ocean University) ;
  • Lee, Jaeha (Dept. of Civil Engineering, Korea Maritime and Ocean University)
  • 김우석 (충남대학교 토목공학과) ;
  • 남정희 (한국건설기술연구원) ;
  • 민근형 (충남대학교 토목공학과) ;
  • 김경진 (한국해양대학교 토목환경공학과) ;
  • 이재하 (한국해양대학교 건설공학과)
  • Received : 2015.06.23
  • Accepted : 2016.07.26
  • Published : 2016.10.30

Abstract

In terms of bridge construction, the concrete deck slab is weak members compared to beam members of the bridge supports. Deck slabs must be sound to support and distribute vehicle loads. If slabs are not enough to support the loads, it should be replaced. Bridge deck replacement has been an important industry over the world since the construction is simplified to shorten construction time and to save construction costs. Slab module provides a quickly, easily and reliably construction method in order to avoid high cost and minimum traffic disruption. in addition, slab module shows high reliability since they are factory products. However, slab module should be considered in the performance under various loads. In this study, structural analysis is performed to evaluate the performance of slab module under vehicle loads and temperature loads. Spiral rebar is also utilized around the vertical joints to improve the structural integrity under the lifting loads. In order to confirm the weak area of slab module for the lift condition, numerical analysis has been performed.

교량의 슬래브에 파손이 발생할 경우 슬래브의 보수보강을 위한 공사로 인해 차량 통행이 제한된다. 모듈러 교량의 경우 이러한 시간적 비용을 줄일 수 있는 방법으로서 많은 연구가 진행되고 있다. 본 연구에서는 연결부에 높은 응력이 발생하는 모듈러 도로 슬래브를 온도하중과 차량하중을 적용하여 구조해석을 실시하였으며 수직연결부 부근에 나선철근을 매입하여 그 성능을 확인하였다. 또한 인양 시의 모듈러 도로 슬래브의 거동 및 취약부분을 확인하기 위하여 인양하중을 적용한 구조해석을 실시하여 유리한 조건의 인양방법을 살펴보았다. 그 결과 온도하중에 의해 수직연결부가 항복하는 것이 확인되었으며, 나선철근을 수직연결부 부분에 매립할 경우 인양 시에 구조물의 손상이 감소하는 것을 확인할 수 있었다. 또한 6개 수직연결부를 이용하여 인양할 시 3개 수직연결부 사용대비 50%의 응력을 감소시킬 수 있는 것으로 확인되었다.

Keywords

References

  1. Lee, P., Park, C., and Jung, E. "R&D in Modular Bridges", Magazine of the Korea Concrete Institute, Vol.25, Issue.2, 2013, pp.16. https://doi.org/10.22636/MKCI.2013.25.2.16
  2. Lee, J., Lee, S., Song, J. and Park, K. "Static Load Tests on Flexural Strength and Crack Serviceability of a Longitudinal Joint for the Slab-Type Precast Modular Bridges", Journal of the Korea Concrete Institute, Vol.27, Issue.2, 2015, pp. 137-145 https://doi.org/10.4334/JKCI.2015.27.2.137
  3. Joo, B., Song, J., and Lee, S. "Flexural & Fatigue Evaluation of Link Slab for Continuous Girder-Type Precast Modular Bridges", Journal of the Korea Concrete Institute, Vol.25, Issue.5, 2013, pp. 517-528 https://doi.org/10.4334/JKCI.2013.25.5.517
  4. Ministry of Land, Transport and Maritime Affairs, Korean Highway Bridge Design Code(Limit State Design), Korea Road and Transportation Association, 2012.
  5. AASHTO LRFD, AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS Customary U.S. Units, AASHTO, 2012.
  6. Ministry of Land, Transport and Maritime Affairs, User Manual for Road Pavement Structure Design Program, Republic of Korea, 2011.
  7. Park, S., Kim, W., Song, J., and Lee, S., "Joint Performance Evaluation and development of Modular Road System", Journal of Korean Society of Hazard Mitigation, Vol.13, No.6, 2013, pp.131-137. https://doi.org/10.9798/KOSHAM.2013.13.6.131
  8. ANSYS Inc., ANSYS APDL theory guide, Release 14.5 ANSYS Inc. 2010.
  9. Lee, J., and F. L. Fenves, "Plastic-Damage Model for Cyclic Loading of Concrete Structures", Journal of Engineering Mechanics, Vol. 124, no.8, 1998, pp.892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
  10. International Federation for Structural Concrete, CEB-FIP MODEL CODE 2010, Lausanne Switzerland, 2010.
  11. David, K. M., McCullough, B. F., Burns, N. H., and Schindler, Anton K., "Feasibility of precast prestressed concrete panels for expediting PCC pavement construction", Report No. FHWA/TX-01/1517-1, Center for Transportation Research, The University of Texas at Austin, 2000.
  12. David, K. M., McCullough, B. F., and Burns, N. H. "Construction and Preliminary Monitoring of the Georgetown", Texas Precast Prestressed Concrete Pavement. Report No. 1517-01-IMP, Center for Transportation Research, The University of Texas at Austin, 2002.
  13. David, K. M., McCullough, B. F., and Burns, N. H. "Construction of the California Precast Concrete Pavement Demonstration Project", Report No. FHWA-IF-06-010, The Transtec Group Inc., 2004.
  14. Drago, J. "Innovation Fast-Setting Concrete", Caltrans Journal, Vol.2, No.4, 2002, pp.46-49.
  15. Kohler, E., du Plessis, L., Smith, P. J., and Pyle, T. "Precast Concrete Pavements and Results of Accelerated Traffic Load Test", International Conference on Optimizing Paving Concrete Mixtures and Accelerated Concrete Pavement Construction and Rehabilitation, Atlanta, GA, USA, 2007, pp.263-282.
  16. Houben, "APT Testing and 3D Finite Element Analysis of 'Modieslab' Modular Pavement Structures", Delft University of Technology, Faculty of Civil Engineering and Geosciences Road and Railway Engineering, 2004.
  17. ABAQUS, ABAQUS Documentation, Dassault Systemes, Providence, RI, U.S.A, 2013.
  18. Ministry of Land, Transport and Maritime Affairs, Concrete Structural Design Code, 2012.