DOI QR코드

DOI QR Code

디지털 이미지 분석을 통한 지속 하중과 온도의 복합 환경이 CFRP 쉬트와 콘크리트의 부착강도 및 크리프 거동에 미치는 영향 분석

Combined Effects of Sustained Load and Temperature on Pull-off Strength and Creep Response between CFRP Sheet and Concrete Using Digital Image Processing

  • Jeong, Yo-Seok (Research Institute for Construction Disaster Prevention, Chungnam National University) ;
  • Lee, Jae-Ha (Dept. of Civil Engineering, Korea Maritime and Ocean University) ;
  • Kim, Woo-Seok (Dept. of Civil Engineering, Chungnam National University)
  • 투고 : 2016.03.17
  • 심사 : 2016.08.18
  • 발행 : 2016.10.30

초록

본 연구에서는 디지털 이미지를 사용하여 DIC(Digital Image Correlation) 기법 및 부착파괴면 분석을 통해 부착파괴에너지와 부착강도의 정량적 분석뿐만 아니라 계면의 부착 면 파괴 양상의 정성적 접근을 통해 지속 하중과 온도의 복합 하중에 대한 FRP 부착 실험체의 거동을 분석하였다. 이를 위해 CFRP 쉬트를 부착한 일면전단실험체를 제작하여 사용하였다. 일면전단실험체의 지속 하중 기간의 거동은 에폭시 크리프의 영향을 상당히 받으며 지속 하중 기간 동안에 에폭시의 점탄성 특징으로 인해 응력완화가 발생하였다. 응력완화는 지속 하중 이후 실시한 계면전단실험에서 사용한 DIC 기법을 통해 관찰 하였으며 지속하중 기간 동안의 응력완화로 인해 지속하중 실험체의 최대부착파괴하중 및 계면파괴에너지가 대조실험체보다 증가하였다. 모든 실험체의 부착 파괴 면을 디지털 이미지화하여 파괴 면의 양상을 정성적/정량적으로 분석 하였다. 디지털 이미지 분석 결과 지속 하중 기간 동안 파괴 형태가 콘크리트면내파괴에서 계면부착파괴 형태로 전이가 발생하였으며 이러한 전이로 인해 지속하중 기간이 증가할수록 지속하중의 최대부착파괴하중에 대한 긍정적인 효과 감소하였다.

This paper aims at examining the effects of sustained load and elevated temperature on the time-dependent deformation of a carbon fiber reinforced polymer (CFRP) sheets bonded to concrete as well as the pull-off strength of single-lap shear specimens after the sustained loading period using digital images. Elevated temperature during the sustained loading period resulted in increased slip of the CFRP composites, whereas increased curing time of the polymer resin prior to the sustained loading period resulted in reduced slip. Pull-off tests conducted after sustained loading period showed that the presence of sustained load resulted in increased pull-off strength and interfacial fracture energy. This beneficial effect decreased with increased creep duration. Based on analysis of digital images, results on strain distributions and fracture surfaces indicated that stress relaxation of the epoxy occurred in the 30 mm closest to the loaded end of the CFRP composites during sustained loading, which increased the pull-off strength provided the failure locus remained mostly in the concrete. For longer sustained loading duration, the failure mode of concrete-CFRP bond region can change from a cohesive failure in the concrete to an interfacial failure along the concrete/epoxy interface, which diminished part of the strength increase due to the stress relaxation of the adhesive.

키워드

참고문헌

  1. ACI 440.2R-08, "Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures", ACI, 2008.
  2. Hong, H., and Shin, Y., "Structural Performance Evaluation of Reinforced Concrete Beams with Externally Bonded FRP Sheets", Journal of the Korea Concrete Institute, Vol.15, No.1, 2003, pp.78-86. https://doi.org/10.4334/JKCI.2003.15.1.078
  3. Park, J., Jung, W., You, Y., and Park, Y., "An Estimate of Flexural Strength for Reinforce Concrete Beams Strengthened with CFRP Sheets", Journal of the Korea Concrete Institute, Vol.17, No.2, 2005, pp.213-220. https://doi.org/10.4334/JKCI.2005.17.2.213
  4. Sim, J., Oh, H., Moon, D., and Park, K., "Prediction of the Shear Strength of FRP Strengthened RC Beams (I)-Development and Evaluation of Shear strength model", Journal of the Korea Concrete Institute, Vol.17, No.3, 2005, pp.343-351. https://doi.org/10.4334/JKCI.2005.17.3.343
  5. You, Y., Choi, K., and Kim, K., "An Experimental Study to Prevent Debonding Failure of RC Beams Strengthened with GFRP Sheets", Journal of the Korea Concrete Institute, Vol.19, No.6, 2007, pp.677-684. https://doi.org/10.4334/JKCI.2007.19.6.677
  6. Chen, J., and Teng, J., "Anchorage strength models for FRP and steel plates bonded to concrete", Journal of Structural Engineering, Vol.127, No.7, 2001, pp.784-791. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(784)
  7. Toutanji, H., Saxena, P., Zhao, L., and Ooi, T., "Prediction of Interfacial Bond Failure of FRP-concrete Surface", Journal of Composites for Construction, Vol.11, No.4, 2007, pp.427-436 https://doi.org/10.1061/(ASCE)1090-0268(2007)11:4(427)
  8. Ouyang, Z., and Wan, B., "Experimental and Numerical Study of Moisture Rffects on the Bond Fracture Energy of FRP/Concrete Joints", Journal Reinforced Plastics and Composites, Vol.27, No.2, 2008, pp.205-223. https://doi.org/10.1177/0731684407082952
  9. Tuakta, C., and Buyukozturk, O., "Deterioration of FRP/ Concrete Bond System Under Variable Moisture Conditions Quantified by Fracture Mechanics", Composites Part B: Engineering, Vol.42, No.2, 2011, pp.145-154. https://doi.org/10.1016/j.compositesb.2010.11.002
  10. Biscaia, H., Silva, M., and Chastre, C., "An Experimental Study of GFRP-to-concrete Interfaces Submitted to Humidity Cycles", Composite Structures, Vol.10, No.1, 2014, pp. 354-368.
  11. Tartar, J., and Hamilton, H., "Bond Durability Factor for Externally Bonded CFRP Systems in Concrete", Journal of Composites for Construction, Vol.20, No.1, 2016.
  12. Kim, S., Kim, K., Han, K., Song, S., and Park, S., "A Prediction of the Long-Term Deflection of RC Beams Externally Bonded with CFRP and GFRP", Journal of the Korea Concrete Institute, Vol.20, No.6, 2008, pp.765-771. https://doi.org/10.4334/JKCI.2008.20.6.765
  13. You, Y., Choi, K., and Kim, K., "Long-Term Behavior of CFRP Strips under Sustained Loads", Journal of the Korea Concrete Institute, Vol.21, No.2, 2009, pp.139-146. https://doi.org/10.4334/JKCI.2009.21.2.139
  14. Jia, J., Boothby, T., Bakis, C., and Brown, T., "Durability Evaluation of Glass Fiber Reinforced-polymer-concrete Bonded Interfaces", Journal of Composites for Construction, Vol.9, No.4, 2005, pp.348-359. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:4(348)
  15. Diab, H., and Wu, Z., "Nonlinear Constitutive Model for Time-dependent Behavior of FRP-concrete Interface", Composites Science and Technology, Vol.67, No.11-12, 2007, pp.2323-2333. https://doi.org/10.1016/j.compscitech.2007.01.018
  16. Gullapalli, A., Lee, J., Lopez, M., and Bakis, C., "Sustained Loading and Temperature Response of Fiber-reinforced Polymer-concrete Bond", Transportation Research Record, Vol.2131, 2009, pp.155-162. https://doi.org/10.3141/2131-15
  17. Ferrier, E., Michel, L., Jurkiewiez, B., and Hamelin, P., "Creep Behavior of Adhesives used for External FRP Strengthening of RC Structures", Construction and Building Materials, Vol.25, No.2, 2011, pp.461-467. https://doi.org/10.1016/j.conbuildmat.2010.01.002
  18. Hamed, E., and Bradford, M., "Flexural Time-dependent Cracking and Post-cracking Behaviour of FRP Strengthened Concrete Beams", International Journal of Solids and Structures, Vol.49, No.13, 2012, pp.1595-1607. https://doi.org/10.1016/j.ijsolstr.2012.03.001
  19. Zhang, C., and Wang, J., "Interface Stress Redistribution in FRP-strengthened Reinforced Concrete Beams Using a Three-parameter Viscoelastic Foundation Model", Composites Part B: Engineering, Vol.43, No.9, 2012, pp.3009-3019. https://doi.org/10.1016/j.compositesb.2012.05.042
  20. Jaipuriar, A., Characterization and modeling of creep behavior in ambient temperature cured thermoset resin, Master's dissertation, Pennsylvania State University, 2011.
  21. Jaipuriar, A., Bakis, C., and Lopez, M.. "Cure Kinetics and Physical Aging of an Ambient-curing Epoxy Resin". In Proc. of the 6th Intl. Conf on Composite FRP in Civil Engineering 2012, CICE 2012, Rome, Italy.
  22. Peters, W., and Ranson, W., "Digital Imaging Techniques in Experimental Stress Analysis", Optical Engineering, Vol.21, No.3, 1982, pp.427-431.
  23. Lee, J., and Lopez, M.. "Non-contact measuring techniques to characterize deformation on FRP Uwrap anchors", Proc. 10th International Symposium on Fiber-Reinforced Polymer Reinforcement for Concrete Structures 2011, FRPRCS-10, ACI, Tampa, FL, United States, pp.245-258.
  24. Jeong, Y., Effects of temperature and sustained loading on the response of FRP-strengthened concrete elements, Doctoral Thesis, Pennsylvania State University, U.S., 2014.
  25. Ruocci, G., Argoul, P., Benzarti, K., and Freddi, F., "An Improved Damage Modelling To Deal With The Variability Of Fracture Mechanisms In FRP Reinforced Concrete Structures", International Journal of Adhesion and Adhesives, Vol.45, 2013, pp.7-20. https://doi.org/10.1016/j.ijadhadh.2013.03.009
  26. Mazzotti, C., and Savoia, M., "Stress Redistribution Along the Interface Between Concrete and FRP Subject to Longterm Loading", Advances in Structural Engineering, Vol.12, No.5, 2009, pp.651-661. https://doi.org/10.1260/136943309789867926
  27. Dai, J., Ueda, T., and Sato, Y., "Development of the Nonlinear Bond Stress-Slip Model of Fiber Reinforced Plastics Sheet-concrete Interfaces With a Simple Method", Journal of Composites for Construction, Vol.9, No.1, 2005, pp.52-62. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:1(52)
  28. Dai, J., Gao, W., and Teng, J., "Bond-slip Model for FRP Laminates Externally Bonded to Concrete at Elevated Temperature", Journal of Composites for Construction, Vol.17, No.2, 2013, pp.217-228. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000337